Australian Hockey Centre Development

Transport Impact Assessment

Prepared for:

Department of Finance

13 November 2024

Prepared by:

Stantec Australia Pty Ltd

Project/File: 300304837

Australian Hockey Centre

TOWN OF VICTORIA PARK Received: 07/01/2025

Revision	Description	Author	Date	Quality Check	Date	Independent Review	Date
001	Draft	JD/SC	08/11/2024	PM	08/11/2024	DH	08/11/2024
002	Final	JD/SC	13/11/2024	PM	13/11/2024	DH	13/11/2024

Project: 300304837

The conclusions in the Report titled Australian Hockey Centre are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the scope of work was conducted and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from Department of Finance (the "Client") and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with Stantec's contract with the Client. While the Report may be provided by the Client to applicable authorities having jurisdiction and to other third parties in connection with the project, Stantec disclaims any legal duty based upon warranty, reliance or any other theory to any third party, and will not be liable to such third party for any damages or losses of any kind that may result.

Prepared by	Signature
	Signature
	Seb Cano
	Printed Name
	4
Reviewed by	
reviewed by	Signature
	Desmond Ho
	Printed Name
Approved by	71. Sott
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Signature
	Richard Isted
	Printed Name

Project: 300304837

Table of Contents

1	Introduction	
1.1	Background	1
1.2	Site Location	
1.3	Surrounding Land Uses	2
1.4	Existing Road Network	2
1.5	Existing Intersections	4
1.5.1	Hayman Road and Kent Street	4
1.5.2	Hayman Road and Brodie-Hall Drive	
1.5.3	Hayman Road and Dumas Road	
1.5.4	Kent Street and University Boulevard	
1.5.5	University Boulevard and Karrak Drive	
1.5.6	University Boulevard and Dumas Road	
1.6	Existing Traffic Volumes	
1.6.1	MRWA Traffic Map Volumes	
1.6.2	Surveyed Traffic Volumes	
1.7	Crash Assessment	
,	Ordon / toocoomone	12
2	Public Transport Facilities	15
- 2.1	Existing Public Transport Facilities	
	ZAGUNG F GENE Transport F GENEGO	
3	Pedestrian and Cycling Facilities	17
3.1	Existing Pedestrian and Cycling Facilities	
0.1	Exioung Foundation and Gyoling Foundation	
4	Proposed Development	19
4.1	Proposed Development	
4.2	Access Arrangements	
4.3	Provision for Service Vehicles	
4.3.1	Waste Collection	
4.3.2	Delivery Trucks	
4.3.3	Broadcast Truck	
4.3.4	Other Service Vehicles	
1.0.1	Curior Corvido Vorticios	
5	Parking Requirements and Compliance	28
5.1	Parking Requirements & Provision	
5.2	Recommended Parking Mitigation Measures	
5.2.1	Provision of Cycling Transport Facilities	
5.3	Parking Compliance	
5.3.1	Proposed Northern Car Park	
5.3.2	Proposed Southern Car Park	
5.3.3	Karrak Drive Parallel Parking Bays	
0.0.0	Trainak Brive Faraner Farking Bays	
6	Changes to Surrounding Network	35
6.1	Road Network	
6.2	Pedestrian and Cycling Network	
6.3	Public Transport Network	
-	1	
7	Integration with Surrounding Area	38
8	Transport Analysis	
8.1	Analysis Overview	
8.2	Assessment Years and Time Periods	30
8.3	Key Intersections	
8.4	Key Assumptions	
8.5	Development Trip Generation	
		т.

Australian Hockey Centre Table of Contents

		TOWN OF VICTORIA PARK	
	Overview	Received: 07/01/2025	
8.5.1			
8.5.2	Staff and National Team Players		
8.5.3 8.6	Remaining Curtin University Parking Trip Distribution		
8.7	Intersection Performance Analysis		
8.7.1	Traffic Volumes		
8.8	SIDRA Analysis		
8.8.1	Scenario 1: 2024 Existing Year		
8.8.2	Scenario 2: 2029 Traffic with Development Traffic		
8.8.3	Scenario 3: 2039 Traffic with Development Traffic		
8.9	SIDRA Results Summary		
8.9.1	Existing Year Performance		
8.9.2	Future Year Performance		
9	Conclusions		. 66
List of Ta	ahlas		
Table 1-1			3
Table 1-2			
Table 1-3	•		
Table 1-4	. Intersection Crashes		. 12
Table 1-5			
Table 2-1	,		
Table 5-1	3		
Table 5-2			
Table 5-3	0 1		
Table 5-4	J -		
Table 5-5			
Table 5-6 Table 6-1	9 1		
Table 8-1			
Table 8-2	·		
Table 8-3	, ,		
Table 8-4			
Table 8-5	•		
Table 8-6	•		
Table 8-7	· · · · · · · · · · · · · · · · · · ·		
Table 8-8	· · · · · · · · · · · · · · · · · · ·		. 54
Table 8-9			. 54
Table 8-1			
Table 8-1			
Table 8-1			
Table 8-1	•		
Table 8-1			
Table 8-1	,		
Table 8-1	· J		
Table 8-1	g e e e e e e e e e e e e e e e e e e e		
Table 8-1	•		
Table 8-1	•		
Table 8-2	Scenario 3 – University Boulevard and Dumas Road		04
List of Fi			
Figure 1-			
Figure 1-			
Figure 1-	3: Road Hierarchy		4

Australian Hockey Centre

Table of Contents

TOWN	OF V	ICT	ORI	Α	PAF	₹K
Recei	ived:	07	/01/	2	025	

Figure 1-4:	Existing Hayman Road / Kent Street Intersection	5
Figure 1-5:	Existing Hayman Road / Brodie-Hall Drive Intersection	5
Figure 1-6:	Existing Hayman Road / Dumas Road Intersection	
Figure 1-7:	Existing Kent Street / University Boulevard Intersection	6
Figure 1-8:	Existing University Boulevard / Karrak Drive Intersection	
Figure 1-9:	Existing University Boulevard / Dumas Road Intersection	7
Figure 1-10:	MRWA Traffic Map Volumes	9
Figure 1-11:	Survey Traffic Volumes (November 2023)	10
Figure 1-12:	Survey Traffic Volumes (September 2024)	11
Figure 1-13:	Crash Severity Map	13
Figure 2-1:	Existing Bus Stops	15
Figure 2-2:	Existing Bus Routes	16
Figure 3-1:	Existing Cycling Network	
Figure 3-2:	Curtin University Perth campus – Access and Inclusion Map	
Figure 4-1:	Site Plan	
Figure 4-2:	Access Arrangements	
Figure 4-3:	Swept Paths – 11.0m Waste Collection Vehicle (Northern Car Park)	
Figure 4-4:	Swept Paths – 10.1m Waste Collection Vehicle (Southern Car Park)	22
Figure 4-5:	Swept Paths – 12.5m HRV Truck (Northern Car Park)	
Figure 4-6:	Swept Paths – Broadcast Truck (South Car Park)	
Figure 4-7:	Swept Paths – Fire Truck (Northern Car Park)	
Figure 4-8:	Swept Paths – Fire Truck (Southern Car Park)	
Figure 4-9:	Swept Paths – Ambulance Van (Northern Car Park)	
Figure 4-10:	Swept Paths – Ambulance Van (Southern Car Park)	
Figure 4-11:	Swept Paths – 12.5m Bus (Arrival Plaza)	
Figure 5-1:	Parking Demand Profile	
Figure 5-2:	End of Trip (EOT) Facilities	
Figure 5-3:	Swept Paths – B85 Design Vehicle (North Car Park)	
Figure 5-4:	Swept Paths – B85 Design Vehicle (Southern Car Park)	
Figure 6-1:	Turn Warrant Assessment – Traffic Flow Inputs	
Figure 6-2:	MRWA Intersection Turn Treatments	
Figure 6-3:	Proposed Intersection Arrangement – Hayman Road & Karrak Drive	37
Figure 7-1:	Surrounding Attractors and Generators	
Figure 8-1:	Location of Key Intersections	
Figure 8-2:	Anticipated Trip Movements	
Figure 8-3:	Development Trip Distribution	
Figure 8-4:	Scenario 1 – Hayman Road and Kent Street Intersection	
Figure 8-5:	Scenario 1 – Hayman Road and Brodie-Hall Drive Intersection	
Figure 8-6:	Scenario 1 – Hayman Road and Dumas Road Intersection	
Figure 8-7:	Scenario 1 – University Boulevard and Kent Street Intersection	
Figure 8-8:	Scenario 1 – University Boulevard and Karrak Drive Intersection	
Figure 8-9:	Scenario 1 – University Boulevard and Dumas Road Intersection	
Figure 8-10:	Scenario 2 – Hayman Road and Karrak Drive Intersection	56

List of Appendices

Appendix A WAPC Checklist

Appendix A WAPC Checklist
Appendix B Site Plan
Appendix C Swept Path Diagrams
Appendix D Intersection Design Plan
Appendix E Design Traffic Volumes
Appendix F SIDRA Results

Project: 300304837

iii

1 Introduction

1.1 Background

Stantec has been commissioned by Hunt Architects Pty Ltd on behalf of the Department of Finance ('the Client') to undertake a Transport Impact Assessment (TIA) for a proposed redevelopment of the State Hockey Centre on the Curtin University site located within the suburb of Bentley ('Site') in the Town of Victoria Park.

This report aims to assess the impact of the development on the adjacent road network. The report will focus on access, public transport, pedestrian and cycle networks, circulation, car parking, with a focus on traffic operations.

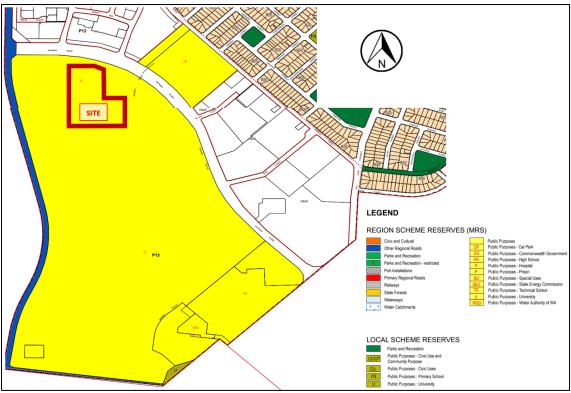
This report has been prepared in accordance with the Western Australian Planning Commission (WAPC) Transport Impact Assessment Guidelines for Developments: Volume 4 – Individual Developments (2016) and the checklist is included in **Appendix A**.

1.2 Site Location

The Site is located on the Curtin University site within the Town of Victoria Park. **Figure 1-1** shows an aerial image of the Site. The Site is bounded by University Boulevard to the south, Dumas Road to the east, and Hayman Road to the north.

Figure 1-1: Aerial Image of Site

Source: Metromap (2024)


Project: 300304837

1

1.3 Surrounding Land Uses

The Site is zoned as 'Public Purposes – University' under the *Town of Victoria Park Town Planning Scheme No.1* as shown in **Figure 1-2**. Areas surrounding the Site are zoned for residential dwellings and for parks and recreation.

Figure 1-2: Zoning Map

Source: Town of Victoria Park Town Planning Scheme No. 1

1.4 Existing Road Network

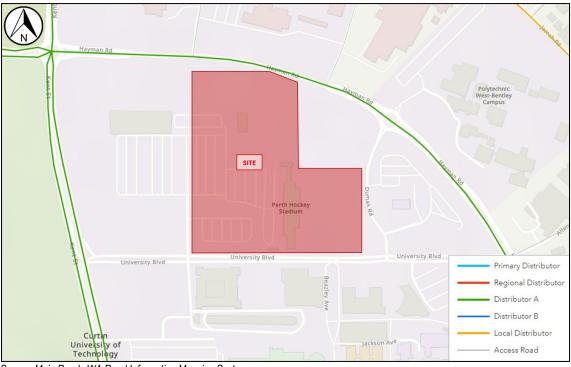
Road classifications are defined in the Main Roads Functional Hierarchy as follows:

- **Primary Distributors (light blue):** Form the regional and inter-regional grid of Main Roads WA traffic routes and carry large volumes of fast-moving traffic. Some are strategic freight routes, and all are National or State roads. They are managed by Main Roads.
- Regional Distributors (red): Roads that are not Primary Distributors, but which link significant destinations and are designed for efficient movement of people and goods within and beyond regional areas. They are managed by Local Government.
- District Distributor A (green): These carry traffic between industrial, commercial and
 residential areas and connect to Primary Distributors. These are likely to be truck routes and
 provide only limited access to adjoining property. They are managed by Local Government.
- District Distributor B (dark blue): Perform a similar function to District Distributor A but with reduced capacity due to flow restrictions from access to and roadside parking alongside adjoining property. These are often older roads with traffic demand in excess of that originally intended. District Distributor A and B roads run between land-use cells and not through them,

forming a grid that would ideally be around 1.5 kilometres apart. They are managed by Local Government.

- Local Distributors (orange): Carry traffic within a cell and link District Distributors at the
 boundary to access roads. The route of the Local Distributor discourages through traffic so
 that the cell formed by the grid of District Distributors only carries traffic belonging to or
 serving the area. These roads should accommodate buses but discourage trucks. They are
 managed by Local government.
- Access Roads (grey): Provide access to abutting properties with amenity, safety and
 aesthetic aspects having priority over the vehicle movement function. These roads are bicycle
 and pedestrian friendly. They are managed by Local government.

The Site is bounded by Hayman Road to the north, University Boulevard to the South, and Dumas Road to the east. The surrounding road network is further described in **Table 1-1** and **Figure 1-3** shows the hierarchy as per the Main Roads WA Road Information Mapping System.


Table 1-1. Road Network Classification

Road Name	Road Hierarchy	Jurisdiction	No. of Lanes	No. of Footpaths	Width (m)	Speed Limit (km/h)
Hayman Road (1290004)	Distributor A	Local Government	2	1	10.0m	60
Kent Street (1290077)	Distributor A	Local Government	4	1	26.0m (incl. 7.0m median)	70
University Boulevard	N/A	N/A	2	2	18.0m (incl. 2.0m median)	≤50
Karrak Drive	N/A	N/A	2	2	Approx. 6.0m-15.0m	≤50
Dumas Road	N/A	N/A	2	2	12.0m	≤50

Source: Main Roads WA Road Information Mapping System (2024)

Three roads (i.e., University Boulevard, Karrak Drive, and Dumas Road) are noted to not have any classification according to the Main Roads WA Road Information Mapping System. However, Curtin University's online information indicate that these roads are public roads that runs through the Bentley campus and that these three roads are part of the campus infrastructure but remains under public ownership and management.

Figure 1-3: Road Hierarchy

Source: Main Roads WA Road Information Mapping System

1.5 Existing Intersections

1.5.1 Hayman Road and Kent Street

Hayman Road and Kent Street intersection is located to the northwest of the Site. It is a four-legged roundabout-controlled intersection as shown in **Figure 1-4**.

Figure 1-4: Existing Hayman Road / Kent Street Intersection

Source: Metromap (2024)

1.5.2 Hayman Road and Brodie-Hall Drive

Hayman Road and Brodie-Hall Drive intersection is located to the north of the Site. Its current configuration is a three-legged priority-controlled intersection as shown in **Figure 1-5**.

Figure 1-5: Existing Hayman Road / Brodie-Hall Drive Intersection

Source: Metromap (2024)

Project: 300304837

1.5.3 Hayman Road and Dumas Road

Hayman Road and Dumas Road intersection is located to the northeast of the Site and is a four-legged roundabout-controlled intersection as shown in **Figure 1-6**.

Figure 1-6: Existing Hayman Road / Dumas Road Intersection

Source: Metromap (2024)

1.5.4 Kent Street and University Boulevard

University Boulevard and Kent Street intersection is located to the southwest of the Site. It is a three-legged priority-controlled intersection as shown in **Figure 1-7**.

Figure 1-7: Existing Kent Street / University Boulevard Intersection

Source: Metromap (2024)

Project: 300304837

1.5.5 University Boulevard and Karrak Drive

University Boulevard and Karrak Drive intersection is adjacent to and located south of the subject Site. It is a four-legged signalised intersection as shown in **Figure 1-8**.

Figure 1-8: Existing University Boulevard / Karrak Drive Intersection

Source: Metromap (2024)

1.5.6 University Boulevard and Dumas Road

University Boulevard and Dumas Road intersection is located to the east of the Site. It is a three-legged priority-controlled intersection as shown in **Figure 1-9**.

Figure 1-9: Existing University Boulevard / Dumas Road Intersection

Source: Metromap (2024)

Project: 300304837

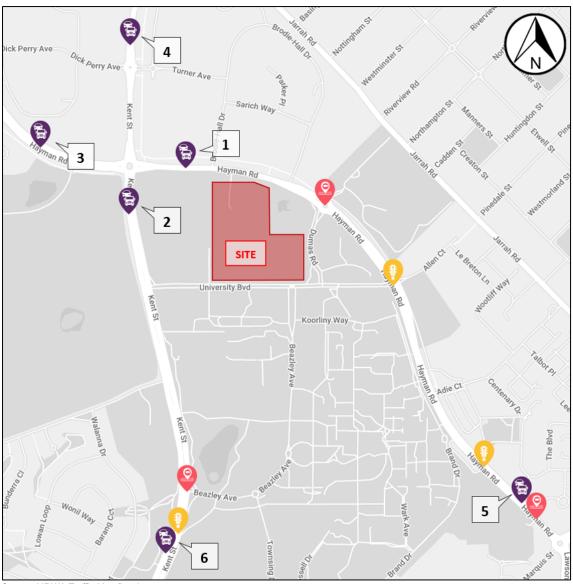
7

1.6 Existing Traffic Volumes

1.6.1 MRWA Traffic Map Volumes

Existing traffic volumes surrounding the Site were sourced from the Main Roads WA Traffic Map database as shown in **Figure 1-10** and are summarised in **Table 1-2**.

Table 1-2. Existing Traffic Volumes


Number	Road Name	Date	Average Two-way Daily Traffic Volume (Weekday)	Average Two-way AM Peak Traffic Volume	Average Two-way PM Peak Traffic Volume
1	Hayman Road (East of Kent Street)	2020/21	9,517	944	875
2	Kent Street (South of Hayman Road)	2020/21	17,366	1,451	1,591
3	Hayman Road (West of Kent Street)	2021/22	19,244	1,893	1,713
4	Kent Street (South of Jarrah Road)	2020/21	10,812	1,008	1,038
5	Hayman Road (North of Marquis Street)	2020/21	11,699	1,148	1,042
6	Kent Street (North of Manning Road)	2020/21	18,693	1,428	1,566

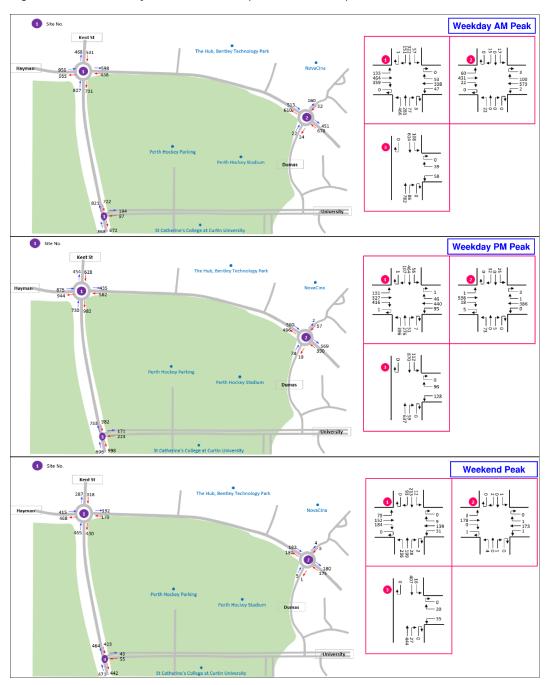
Source: MRWA Traffic Map Database

Project: 300304837

Figure 1-10: MRWA Traffic Map Volumes

Source: MRWA Traffic Map Database

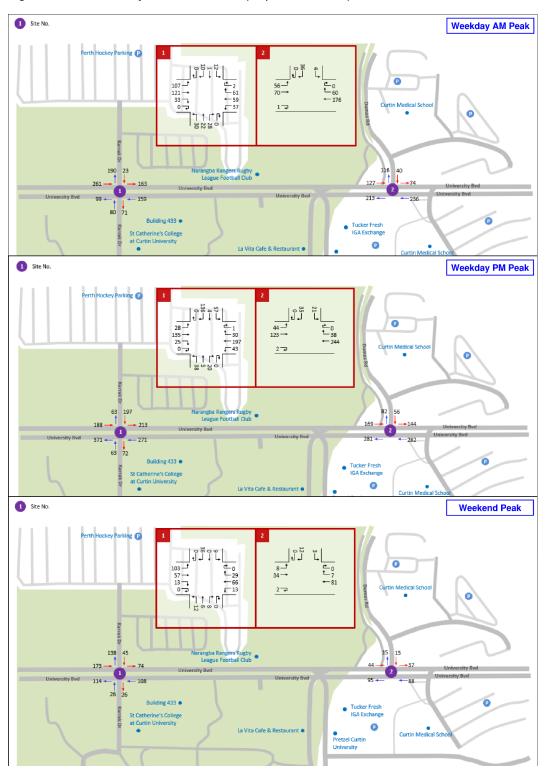
1.6.2 Surveyed Traffic Volumes


A traffic survey was conducted on Thursday, November 2, 2023, from 7:30 am to 9:30 am and from 4:00 pm to 6:00 pm, as well as on Saturday, November 4, 2023, from 7:00 am to 9:00 am at the following key intersections:

- Hayman Road / Kent Street Intersection
- Hayman Road / Dumas Road Intersection
- Kent Street / University Boulevard Intersection

Figure 1-11 illustrates the peak-hour traffic counts at these intersections.

Figure 1-11: Survey Traffic Volumes (November 2023)


Additional traffic survey was conducted on Thursday, September 12, 2024, from 7:30 am to 9:30 am and from 4:00 pm to 6:00 pm, as well as on Saturday, September 14, 2024, from 7:00 am to 9:00 am at the following intersections.

- University Boulevard / Karrak Drive Intersection, and
- University Boulevard / Dumas Road Intersection

Peak-hour traffic counts at these intersections are shown in Figure 1-12.

Figure 1-12: Survey Traffic Volumes (September 2024)

1.7 Crash Assessment

A crash assessment for the surrounding road network of the Site has been completed using the Main Roads WA Reporting Centre. The assessment covers all the recorded accidents for the 5-year period between 01 January 2019 to 31 December 2023.

The crashes for the following road sections and intersections have been extracted:

- University Boulevard (Kent St to Hayman Rd)
- Kent Street (Hayman Road to University Blvd)
- Hayman Road (Kent St to University Blvd)
- Kent Street & Hayman Road Intersection
- Kent Street & University Boulevard Intersection
- Hayman Road & University Boulevard Intersection

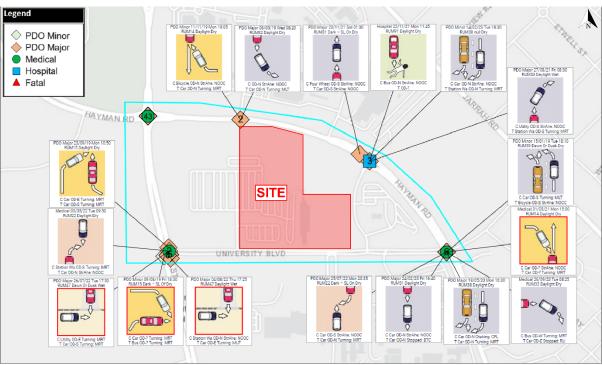
The results of the crash assessment are summarised in **Table 1-3** to **Table 1-5**, and **Figure 1-13** illustrates the severity and location of these crashes relative to the Site.

Table 1-3. Total Crashes

Crash Type (RUM Code)	Fatal	Hospital	Medical	Major Property Damage	Minor Property Damage	Total Crashes
Right Turn Thru	-	-	2	4	4	10
Sideswipe Same Direction	-	-	-	5	3	8
Right Angle	-	-	3	20	12	35
Rear End	-	-	-	13	3	16
Hit Object	-	-	-	1	-	1
Unspecified	-	1	-	-	-	1
Total	-	1	5	43	22	71

Table 1-4. Intersection Crashes

Intersection Name	Fatal	Hospital	Medical	Major Property Damage	Minor Property Damage	Total Crashes
Hayman Rd - Kent St & Hayman Rd	-	-	3	23	17	43
Hayman Rd - Brodie - Hall Dr	-	-	-	1	1	2
Hayman Rd - Curtin Uni Access North - Dumas Rd & Bentley Tafe Campus Access	-	1	-	1	1	3


12

					TOWN OF VICTORIA PARK Received: 07/01/2025		
Hayman Rd - Allen Ct	-	-	1	3	1	5	
Kent St - Kent St & University Blvd	-	-	-	7	1	8	
Total	-	1	4	35	21	61	

Table 1-5. Midblock Crashes

Road Name	Fatal	Hospital	Medical	Major Property Damage	Minor Property Damage	Total Crashes
Hayman Rd	-	-	-	1	-	1
Kent St	-	-	1	7	1	9
Total	-	-	1	8	1	10

Figure 1-13: Crash Severity Map

Source: MRWA Crash Map

A summary of the crash assessment is as follows:

- A total of 71 crashes were recorded in the vicinity of the Site.
- No fatal or serious crashes recorded; one (1) crash incident resulted in hospitalisation.
- Five (5) reported crashes required medical attention.
- 43 crashes resulted in major property damages while 22 minor property damages were recorded.
- 43 crashes were recorded to have occurred at the Kent Street / Hayman Road intersection.

Australian Hockey Centre

1 Introduction

TOWN OF VICTORIA PARK Received: 07/01/2025

The number of crashes that occurred within the surrounding area of the Site appears to be high. In particular, a significant number of the reported incidents (i.e., 43 crashes) were concentrated at the Kent Street / Hayman Road intersection. In addition, 35 right angled crashes were recorded which was the most common type of crash to be reported. These can be addressed through improvements in pavement markings, signage and visibility in order to enhance traffic safety and prevent further accidents. Based on the expected number of trips to be generated by the Site, it is unlikely that the proposed development will further deteriorate the overall safety of the existing road network.

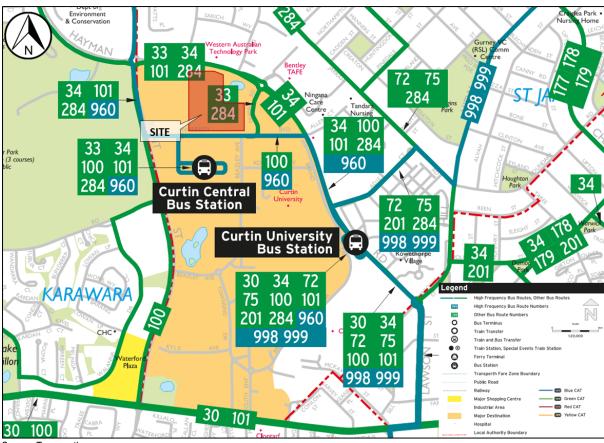
Project: 300304837 14

2 Public Transport Facilities

2.1 Existing Public Transport Facilities

Several bus stops are located within close proximity to the Site as shown in **Figure 2-1**. Existing bus stops can be found along Hayman Road and Kent Street while the Curtin Central Bus Station is located to the south of the Site. The Curtin Central Bus Station is serviced by Bus Routes 33, 34, 100, 101, 284, and 960. These bus routes are shown in **Figure 2-2**, while service frequencies are summarised in **Table 2-1**.

Figure 2-1: Existing Bus Stops



Source: Google Maps (2024)

Project: 300304837

Figure 2-2: Existing Bus Routes

Source: Transperth

Table 2-1. Bus Routes and Service Frequency

		Service Frequencies		
Bus Route	Route Description	Weekdays	Saturdays	Sundays & Public Holidays
33	Elizabeth Quay Bus Station - Karawara via Kensington and Curtin Central Bus Station	30 minutes to 1 hour	1 hour	1 hour
34	Perth Bus port - Cannington Station via Como, Curtin Central and Curtin University Bus Stations	20 minutes to 1 hour	30 minutes to 1 hour	30 minutes to 1 hour
100	Canning Bridge Station - Cannington Station via Kent St Curtin Central and Curtin University Bus Stations	30 minutes	30 minutes	30 minutes
101	Canning Bridge Station - Curtin Central Bus Station via Lawson St and Curtin University Bus Station	30 minutes	30 minutes	30 minutes
284	Belmont Forum Shopping Centre - Curtin University Bus Station via	2 hours	No Service	No Service

TOWN OF VICTORIA PARK
Received: 07/01/2025

	Albany Hwy and Curtin University Bus Station			
960	Mirrabooka Bus Station to Curtin University Bus Station via ECU Mt Lawley and Perth	20 minutes to 1 hour	30 minutes to 1 hour	30 minutes to 1 hour

Source: Transperth

Overall, the Site appears to be highly accessible by public transport due to the provision of several bus stops in close proximity and the extensive bus routes running along the surrounding road network.

3 Pedestrian and Cycling Facilities

3.1 Existing Pedestrian and Cycling Facilities

Figure 3-1 shows the existing cycling network and facilities within the surrounding area of the Site. Generally, the Site is accessible to cyclists and pedestrians as Kent Street and Hayman Road have cycling lanes (or sealed shoulder) and high-quality shared paths. Other roads surrounding the Site, such as University Boulevard, are also equipped with bicycle facilities such as bike racks, bicycle lanes, and shared paths that are suitable for the students and workers arriving and departing from the University.

Authorities Author

Figure 3-1: Existing Cycling Network

Source: Department of Transport

Project: 300304837 17

In addition, Curtin University's *Perth Campus Access and Inclusion Map* shown in **Figure 3-2**, indicates that the footpath on the southern side of University Boulevard is classified as 'universally accessible' and that it further connects to a campus-wide network of accessible routes for users in wheelchairs. There is an opportunity to further extend this network either along Kent Street, Hayman Road, or Dumas Road.

Figure 3-2: Curtin University Perth campus – Access and Inclusion Map

Source: Curtin University

Project: 300304837

4 Proposed Development

4.1 Proposed Development

The proposed redevelopment of the existing Hockey Centre is to include the following facilities:

- New pitches summarised as follows:
 - » West Pitch
 - » South Pitch,
 - » East Pitch, and
 - » Kids Play Pitch
- · Retention of existing North Pitch and its existing stand.
- Stadium / High Performance Building.
- Indoor Centre Administration
- Ancillary buildings and other structures (such as a goalie training and storage sheds)
- Arrival Plaza with bus drop off bay and parallel car parking bays
- 60 car parking bays (exclusive for use by staff and national team players) comprising:
 - » North car park with 39 car parking bays (including 2 ACROD bays).
 - » South car park with 21 car parking bays (including 1 ACROD bay).
- Bus drop-off bay and parallel car parking bays along Karrak Drive extension.

Figure 4-1 shows the proposed site layout plan of the redevelopment. A large-scale version of this plan is also provided in **Appendix B**.

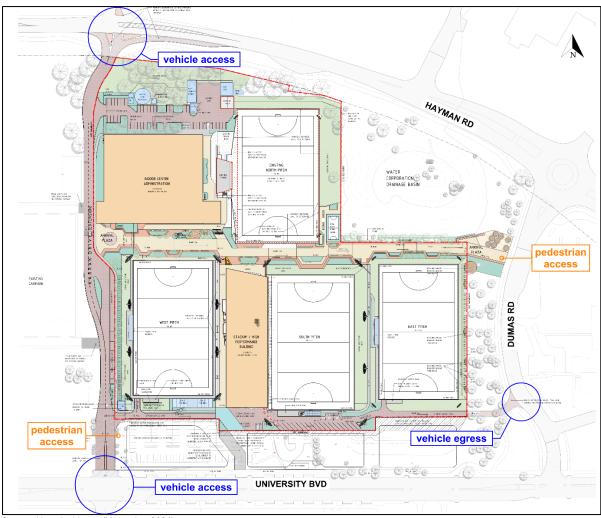
Project: 300304837 19

Figure 4-1: Site Plan

Source: Hunt Architects (November 2024)

4.2 Access Arrangements

Vehicular access to the to the Site is proposed to be primarily via Karrak Drive on the western side of the subject Site as shown in **Figure 4-2**. Karrak Drive will provide access to the proposed car parks, bus drop-off bays, and parallel parking bays. Vehicles are also proposed to exit the southern car park via Dumas Road.


The proposed redevelopment of the Site also includes the extension of Karrak Drive from University Boulevard and connecting with Hayman Road to the north. Discussion on the proposed intersection configuration at the Hayman Rd/ proposed Karrak Drive extension is detailed in **Section 6.1**.

Pedestrian access is proposed via existing footpaths along University Boulevard and Karrak Drive which are anticipated to tie-in with footpaths within the Site. The arrival plaza is also anticipated to provide pedestrian access along Dumas Road. This wide pedestrian facility is expected to connect the proposed Karrak Drive extension and Dumas Road.

20

Figure 4-2: Access Arrangements

Source: Hunt Architects (November 2024)

4.3 Provision for Service Vehicles

4.3.1 Waste Collection

Waste collection is anticipated to be primarily undertaken at the service yard in the northern car park where ancillary facilities such as bin stores, water tanks, and sheds are proposed to be located. Waste vehicles is envisaged to approach the subject site from either Hayman Road or University Boulevard then turning into Karrak Drive to access the northern car park. A swept path assessment for an 11.0m waste collection vehicle (hook-lift) was conducted and the analysis indicated that this vehicle is able to adequately enter, manoeuvre through the car park and exit the proposed northern car park in forward gear as illustrated Figure 4-3.

Figure 4-3: Swept Paths – 11.0m Waste Collection Vehicle (Northern Car Park)

A swept path assessment for a 10.1m waste collection vehicle was also undertaken in the southern car park and is illustrated in **Figure 4-4**. The swept path analysis indicates no encroachments are expected within the southern car park.

Figure 4-4: Swept Paths – 10.1m Waste Collection Vehicle (Southern Car Park)

4.3.2 Delivery Trucks

A loading zone is proposed within the northern car park for deliveries and other services that may be required by the proposed development. A swept path analysis was conducted for a 12.5m truck (HRV) and the assessment indicated that this design vehicle is able to adequately enter and exit this carpark as illustrated in **Figure 4-5**.

NORTH CAR PARK

FRE
BOST TR
CARRET

BORT

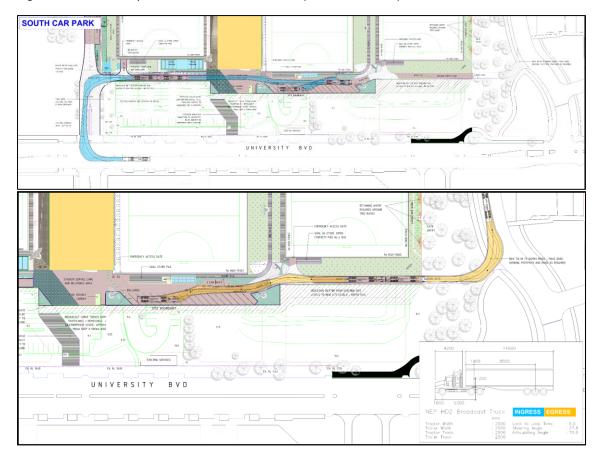
TANK
PAPP SED

TANK
SHID

TO THE TO THE TANK
SHID

TO THE

Figure 4-5: Swept Paths – 12.5m HRV Truck (Northern Car Park)


4.3.3 Broadcast Truck

A broadcast truck delivering equipment for live coverage of major events has also been assessed. The swept path analysis for a modified broadcast truck (i.e., NEP HD2 broadcast truck) was undertaken in the southern car park and it indicated that this vehicle is able to manoeuvre within the car park as shown in **Figure 4-6**. It should be noted that the broadcast truck is only able to enter the southern car park from the University Boulevard eastern approach as it is unable to enter this carpark without encroachments from the Hayman Road direction. It is suggested that appropriate signage be installed to restrict the broadcast truck from entering the subject site from the western approach of University Boulevard.

In addition, it is recommended that the broadcast truck exit the site onto Dumas Road and head northwards towards the Hayman Road and Dumas Road intersection since the broadcast truck is unable to turn into University Boulevard from Dumas Road without encroaching onto the existing kerbs. It is suggested that appropriate signage be installed to restrict the broadcast truck from entering the subject site from Hayman Road and exiting onto University Boulevard.

Figure 4-6: Swept Paths – Broadcast Truck (South Car Park)

4.3.4 Other Service Vehicles

Other service vehicles that are anticipated to visit the proposed development included fire trucks, ambulances and chartered buses. Swept path assessments were also conducted for these design vehicles which indicated no encroachments were identified and these vehicles are able to adequately enter and exit the subject site.

Figure 4-7 to **Figure 4-11** illustrates the swept path diagrams for a fire truck and an ambulance within the proposed car parks as well as for a 12.5m bus accessing the designated bus drop-off bay which is located adjacent to the arrival plaza.

Figure 4-7: Swept Paths – Fire Truck (Northern Car Park)

Figure 4-8: Swept Paths – Fire Truck (Southern Car Park)

Figure 4-9: Swept Paths – Ambulance Van (Northern Car Park)

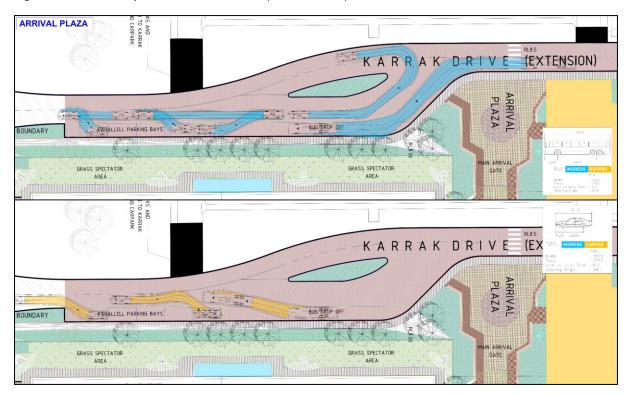


Figure 4-10: Swept Paths – Ambulance Van (Southern Car Park)

Figure 4-11: Swept Paths – 12.5m Bus (Arrival Plaza)

In addition to the 12.5m bus swept paths, the above diagram also shows the swept path for a B85 design vehicle entering and exiting the proposed (5) parallel parking bays along Karrak Drive.

Larger scaled high-resolution swept path diagrams are also included in Appendix C.

27

5 Parking Requirements and Compliance

5.1 Parking Requirements & Provision

The Town of Victoria Park Planning Policy No. 23 does not stipulate any applicable parking requirements for a 'hockey centre'. Hence, the parking requirements have been determined based on first principles using the anticipated day-to-day operations of the Site provided by WA Hockey.

Based on the information provided, the anticipated parking demand profile for the proposed development is shown in **Figure 5-1**.

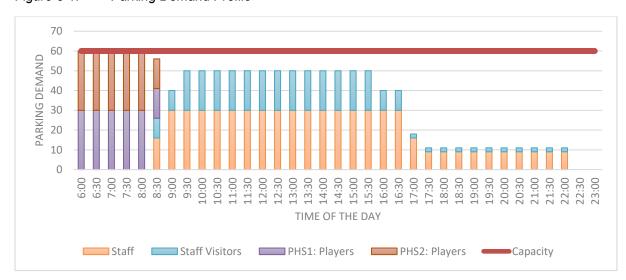


Figure 5-1: Parking Demand Profile

The proposed 60-car parking capacity (refer to **Section 4.1**) would appear to adequately accommodate the parking needs of the staff, visitors, contractors, and national team player user groups. The peak demand occurs during the early morning hours before typical office hours, when all 60 national team players attend the training sessions. Parking occupancy decreases once these sessions end and staff members start arriving for work at around 08:30 AM. In addition, five (5) parallel car parking bays are proposed along Karrak Drive extension near the arrival plaza and bus drop-off bay. These on-street parking bays are anticipated to be utilised for short-term parking (e.g. for pickup and drop-off only).

It should also be noted that the parking bays provided within the development are anticipated to be used exclusively by staff and national team players, with occasional exemption for visitors and contractors.

Venue West conducted a preliminary parking demand analysis based on a macroanalysis of the preliminary schedules provided by WA Hockey. The calculation relies on the average attendance numbers and operational hours of the hockey stadium to derive an average parking turnover per hour which does not take into consideration the variability in hourly behavior during a typical day.

Venue West's analysis estimated that 296 individuals per hour would visit the proposed Hockey facility as shown in **Table 5-1** which translates to 148 vehicles (assuming an average of 2 people per vehicle). Additionally, it was assumed arrivals and departures were back-to-back, resulting in a total of 296 parking spaces per hour being required during the weekend.

Table 5-1. Venue West Parking Calculation

	Weekday	Weekend
Average Attendees	1498	4437
Operation Hours (decimal)	16	15
Average Attendance per hour	94	296

Additionally, assuming some people stay after games and some activity in the indoor courts, it was estimated that a total parking requirement of 350 bays would be adequate.

It is anticipated that the remainder of the existing Curtin University parking adjacent to the Site will be utilised by visitors during normal activities associated with the proposed hockey facility (e.g., seasonal games). With the redevelopment of the Hockey Centre, the remainder of the existing Curtin University parking is anticipated to be utilised by the public visiting the proposed development. It is estimated that approximately 430 car parking bays would be available on the existing Curtin University car park area after the proposed redevelopment. **Table 5-2** summarises the Site's parking provision.

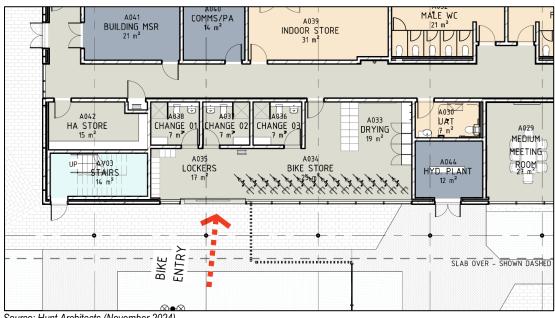
Table 5-2. Car Parking Provision and Curtin University Parking

	Provided Bays	Intended Users
North Car Park	39	Staff / Players
South Car Park	21	Staff / Players
Karrak Drive (on-street bays)	5	Visitors (pick-up & drop-off)
	Retained Bays	
Curtin University Parking	430	Public / Visitors

Based on the above assessment, it would appear that the parking provided on the subject site and on the existing Curtin University parking would meet the anticipated demand for the proposed development.

5.2 Recommended Parking Mitigation Measures

The proposed redevelopment of the state hockey centre has projected only 60 parking bays for office staff, and national team players. The proposed new parking bays would appear to be able to meet the demand generated by the office staff, visitors, and national team players. However, it is advisable that consideration be given to introducing parking management strategies to further reduce reliance on parking spaces for the purposes of sustainability, especially for staff and players, considering the proposed State Hockey Centre is in a location where excellent public transport services and a wide range of bicycle and pedestrian facilities can be utilised by these users. During the early hours, parking utilisation is expected to be at maximum capacity because of the national team training


sessions. However, it is anticipated that the available parking would increase as national players depart after their training sessions. The following parking management strategies could also be considered to minimise the impact on parking:

- Staff could be advised to park temporarily at other available parking areas on the Curtin
 University Campus during the peak parking demand periods, with the intent to move their
 vehicles later in the day. Consideration could also be given to implementing flexible working
 hours for staff which could minimise the potential of parking demand overlap between staff
 and the national players.
- A shuttle service could be provided for staff or players to discourage car usage to the proposed office/hockey centre parking.
- Encouraging car sharing and implementing carpooling programs for the staff can help reduce the number of vehicles requiring parking at the proposed office/facility.
- Incentives such as prizes can be offered to staff who choose to use alternative transport and not to drive to work. This approach promotes sustainability and encourages the use of public transportation, cycling or walking to the proposed Hockey Centre.
- Raising employee awareness about the benefits of using alternative transport and the drawbacks of excessive car use can be disseminated through internal communication, workshops, or seminars. These activities would inform employees about the environmental, health, and cost advantages of alternative transportation.

5.2.1 Provision of Cycling Transport Facilities

The proposed redevelopment of the hockey centre includes end-of-trip (EOT) facilities for staff and players who opt to use their bicycles to reach the Site as shown in **Figure 5-2**. Bike store, change areas, and lockers are provided within the indoor centre administration building. In addition, it is proposed that at least 20 bike racks are allocated for public use externally and within the Site's boundaries.

Figure 5-2: End of Trip (EOT) Facilities

Source: Hunt Architects (November 2024)

Project: 300304837 30

5.3 Parking Compliance

5.3.1 Proposed Northern Car Park

The proposed car park located to the north of the Site consists of 39 car parking bays including 2 ACROD bays and were assessed for a User Class 1A and Class 4 facility in accordance with the requirements in AS2890.1 and AS2890.6 respectively. **Table 5-3** summarises the findings of the compliance assessment.

Table 5-3. Parking Compliance – Northern Car Park

	St	aff / Player Park (User Class 1A			ACROD Parkir (User Class 4	~
Parameter	Provided	Required	Remarks	Provided	Required	Remarks
Bay Width, m	2.5	2.4	Compliant	2.5	2.4	Compliant
Bay Length, m	5.4	5.4	Compliant	5.4	5.4	Compliant
Aisle Width, m	7.2	5.8	Compliant			
Circulation	7.2	3.0 (one-way)	Compliant			
Roadway, m	1.2	5.5 (two-way)	Compliant			
Access Width, m	7.8	3.0 – 5.5 (Category 1)	Compliant			
Shared Area Width, m				2.5	2.4	Compliant
Shared Area Length, m				5.4	5.4	Compliant
Bollard from Aisle, mm				800	800±50	Compliant

In general, there were no non-compliances identified for all the proposed parking bays in the northern car park. A swept path assessment for a B85 design vehicle was also conducted and illustrated in **Figure 5-3**.

Figure 5-3: Swept Paths – B85 Design Vehicle (North Car Park)

5.3.2 Proposed Southern Car Park

The proposed car park located to the south of the subject Site consists of 21 car parking bays, including 1 ACROD bay and 2 parallel parking bays. These bays were assessed for a User Class 1A and Class 4 facility in accordance with the requirements in AS2890.1 and AS2890.6 respectively. **Table 5-4** and **Table 5-5** summarises the findings of the compliance assessment.

Table 5-4. Parking Compliance – Southern Car Park (for angled and 90-degree bays)

		gled Parking E (User Class 1 <i>l</i>	_		ACROD Parking (User Class 4)				
Parameter	Provided	Required	Remarks	Provided	Required	Remarks			
Bay Width, m	2.4	2.4	Compliant	2.4	2.4	Compliant			
Bay Length, m	5.5	5.4	Compliant	5.4	5.4	Compliant			
Aisle Width, m	4.6	3.9	Compliant						
Parameter B, m	3.5	3.4	Compliant						
Parameter C, m	5.7	5.5	Compliant						
Shared Area Width, m				2.5	2.4	Compliant			
Shared Area Length, m				5.4	5.4	Compliant			
Bollard from Aisle, mm				800	800±50	Compliant			

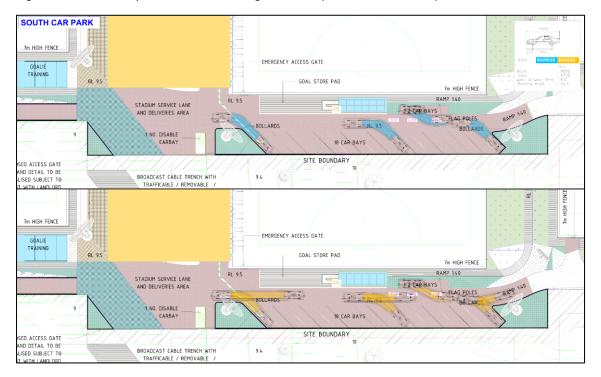


Table 5-5. Parking Compliance – Southern Car Park (for parallel bays)

	Parallel Parking Bays								
Parameter	Provided	Required	Remarks						
Bay Width, m	2.2	2.1	Compliant						
Bay Length, m (obstructed ends)	6.2	6.2	Compliant						
Aisle Width, m	4.6	3.6	Compliant						

In general, no non-compliances were identified for all the proposed parking bays within the proposed southern car park. A swept path assessment for a B85 design vehicle was also conducted as illustrated in **Figure 5-4**.

Figure 5-4: Swept Paths – B85 Design Vehicle (Southern Car Park)

5.3.3 Karrak Drive Parallel Parking Bays

A-t least five (5) parallel parking bays are proposed along Karrak Drive adjacent to the bus drop-off area. These bays were assessed in accordance with the requirements in AS2890.5 and the results are summarised in **Table 5-6**.

Table 5-6. Parking Compliance - Karrak Drive Parallel Parking Bays

		Parallel Parking Bays (On-Street Parking)	
Parameter	Provided	Required	Remarks
Bay Width, m (inc. safety buffer)	3.5	2.0 – 2.3	Compliant
Bay Length, m (unobstructed end)		5.4	Compliant
Bay Length, m (intermediate space, Z)	7.2	6.0 – 6.7	Compliant
Bay Length, m (obstructed end)		6.3 or Length Z	Compliant

No non-compliances were identified for the parallel parking bays proposed on Karrak Drive.

6 Changes to Surrounding Network

6.1 Road Network

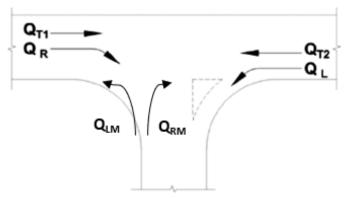
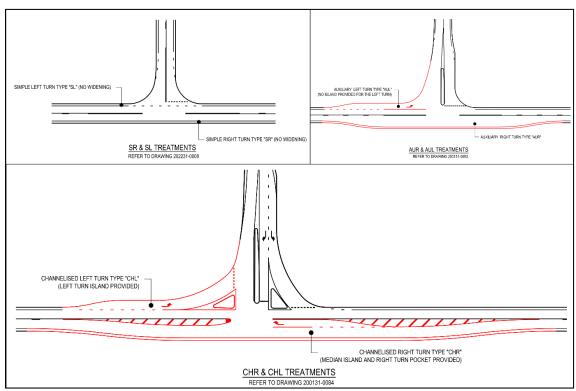

As part of the proposed redevelopment of the hockey centre, the existing Karrak Drive is anticipated to be extended northwards to intersect with Hayman Road and Brodie-Hall Drive forming a new intersection. A turn warrant assessment based on Main Roads WA's Supplement to the Austroads Guide to Traffic Management was undertaken to identify the appropriate turn treatments along Hayman Road for the proposed new intersection with Karrak Drive extension. Estimated traffic volumes along Hayman Road and Karrak Drive for the 2029 and 2039 design years were considered in this assessment. It should be noted that these design traffic volumes were estimated using available traffic counts indicated in **Section 1.6**. Main Roads WA's turn warrant assessment traffic flow diagram is illustrated in **Figure 6-1**, while results are summarised below in **Table 6-1**.

Table 6-1. Turn Warrant Assessments along Hayman Road

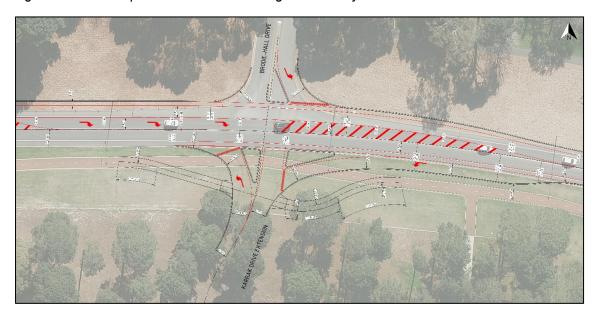
-	2029 Design	Volumes	2039 Desig	gn Volumes
	AM Peak	PM Peak	AM Peak	PM Peak
Design Speed, km/h	70	70	70	70
Splitter Island	No	No	No	No
Dual Carriageway	No	No	No	No
	Mov	rement Volume Input	ts	
Q _{T1}	544	460	595	503
Q _R	16	2	16	2
Q _{T1}	464	568	508	622
QL	15	2	15	2
Q _{LM}	104	117	104	117
Q _{RM}	112	108	112	108
	Rig	ght Turn Assessmen	t	
Qm	1023	1030	1118	1127
%HV	8.00	8.00	8.00	8.00
Х	3.86	1.67	4.18	1.81
Treatment	CHR	SR	CHR	SR
	Le	eft Turn Assessment		
Qm	464	568	508	622
%HV	8.00	8.00	8.00	8.00
Х	1.83	0.97	1.98	1.05
Treatment	AUL(S)	SL	AUL(S)	SL


Figure 6-1: Turn Warrant Assessment – Traffic Flow Inputs

Source: Austroads Guide to Traffic Management Part 6 (2017)

The results of the turn warrant assessment indicates that a channelised right turn (CHR) treatment would be required along Hayman Road for both the 2029 and 2039 design year. Similarly, a short auxiliary left turn lane [AUL(S)] would be required along Hayman Road to accommodate left turns into Karrak Drive. The results would recommend a higher-order turn treatment during the AM peak period when compared to the PM peak period. **Figure 6-2** illustrates the Main Roads WA's intersection turn treatments associated with this assessment.

Figure 6-2: MRWA Intersection Turn Treatments



Source: MRWA Drawing Number 202231-0007-2

The proposed geometric configuration for the proposed Karrak Drive and Hayman Road intersection is illustrated in **Figure 6-3**. A high-resolution version of this intersection plan is provided in **Appendix D**.

Figure 6-3: Proposed Intersection Arrangement – Hayman Road & Karrak Drive

It should be noted that a channelised right turn treatment (CHR) on Hayman Road and a channelised lane (CHL) instead of the short auxiliary lane (AUL) is being proposed. In addition, the Karrak Drive and Brodie Hall Drive approaches are to be restricted to left out turns only.

6.2 Pedestrian and Cycling Network

Figure 6-3 also illustrates the potential realignment of the existing high-quality shared path along Hayman Road as a result of the proposed new intersection arrangement. The realigned path is anticipated to directly intersect Karrak Drive to provide the shortest possible crossing distance.

In addition, Stantec contacted the Town of Victoria Park and was advised that there are no known changes to the pedestrian and cycling facilities in the area in the near future. However, it is understood that there is a possibility for the continuation of existing shared path on Holder Street to Hill View Terrace.

6.3 Public Transport Network

Stantec contacted Transperth and was advised that there are no short to medium term plans to significantly change the existing bus route network or service frequencies around Curtin University.

The Town of Victoria Park has also advised that METRONET is currently exploring mid-tier transport (i.e., high frequency bus) routes on Kent Street (and potentially Manning Road) for implementation in the medium to longer term.

7 Integration with Surrounding Area

The Site is situated within Curtin University grounds which can be considered as a major generator and attractor of trips within the Bentley suburb. **Figure 7-1** illustrates an aerial overview of the Site and its surrounding areas.

Figure 7-1: Surrounding Attractors and Generators

Source: Metromap (2024)

The Site is surrounded by a variety of establishments within proximity to it as shown in the figure above. The most popular key generators/attractors are located along Hayman Road and Kent Street.

These attractors/generators include the following:

- Nearby educational institutions Curtin University, Curtin Primary School, Millen Primary School, and South Metropolitan TAFE,
- Nearby industrial facilities such as the Bentley Technology Park,
- · Surrounding residential areas within Kensington, Como, East Victoria Park, Waterford, and
- Various restaurants/cafes and office/commercial businesses.

8 Transport Analysis

8.1 Analysis Overview

This analysis focuses on the trips generated by the redevelopment of the existing Hockey Centre. Specifically, it focuses on the day-to-day operation of the Site, including office activities, training, and small game fixtures. The redevelopment will introduce 60 parking spaces exclusively for the use of players, staff, volunteers, and officials of the Hockey Centre. The vehicle trips of spectators and visitors associated with the in-season and off-season activities are not included in this analysis, as they are already included in the existing background traffic within the road network surrounding the Curtin University grounds. It is assumed that potential visitors and game spectators will be aware of the limited parking space available within the Site and will continue to park in the remaining Curtin University parking or the surrounding pay parking facilities near the Site. Additionally, it is expected that most visitors and spectators will utilise the excellent public transport services available.

Furthermore, the impact of special events on traffic has not been considered in this report, as these events are infrequent and not representative of the Site's day-to-day operations. Site access and traffic operations during special events are expected to be managed by a special events traffic management plan.

8.2 Assessment Years and Time Periods

Several traffic survey counts were conducted between November 2023 and September 2024 on a typical weekday and weekend at key intersections mentioned in the body of this report (refer to **Section 1.6.2**). Based on the collected data, the peak time periods for the road network were observed to be between 7:45 am to 8:45 am and 4:15 pm to 5:15 pm during the morning and afternoon peak hour periods respectively. Additionally, the weekend peak (i.e., Saturday) was identified to occur between 8:00 am to 9:00 am.

The following scenarios have been analysed as part of this assessment:

- Scenario 1 2024 Existing Year Traffic (Weekday AM, Weekday PM, and Weekend peaks)
- Scenario 2 2029 Background Traffic with the Development-generated Traffic (Weekday AM, Weekday PM, and Weekend peaks), and
- Scenario 3 2039 Background Traffic with the Development-generated Traffic (Weekday AM, Weekday PM, and Weekend peaks)

It should be noted that Scenario 2 considers a 5-year development period for the Site and 2029 is the anticipated opening year of the redeveloped hockey centre. A 10-year post-opening design year (Scenario 3) is also considered.

8.3 Key Intersections

In order to assess the potential impacts of Site-generated traffic on the surrounding road network, the following key intersections have been considered in this assessment:

- · Hayman Road and Kent Street,
- Hayman Road and Brodie-Hall Drive (existing and post-development configuration),
- Hayman Road and Dumas Road,
- · University Boulevard and Kent Street,
- University Boulevard and Karrak Drive, and
- University Boulevard and Dumas Road.

The location of the abovementioned intersections in relation to the Site is illustrated in Figure 8-1.

Figure 8-1: Location of Key Intersections

Source: Metromap (2024)

8.4 Key Assumptions

The following assumptions were made as part of the traffic analysis:

- The assumed opening year of the proposed redeveloped hockey centre is in 2029,
- The 10-year horizon period is usually considered after a development's opening year. For this assessment, the 10-year post-opening horizon period is assumed to be in 2039,
- It is assumed that the traffic generated by the proposed development will be derived from the available car parking spaces reflecting the day-to-day operations of the Site which will mostly comprise of trips made by staff, personnel, and players only.
- The distribution of the development-generated trips across the surrounding road network were based on turning volumes and proportions of key intersection that were surveyed between November 2023 and September 2024.

- Based on available historical traffic data from the Main Roads WA Traffic Map, a conservative 1.0% growth rate per annum was adopted to estimate the existing (2024) traffic volumes at key intersections and in estimating background traffic volumes for Scenario 2 (2029) and Scenario 3 (2039).
- Information on the signal phasing and timing of the existing signalised intersection of University Boulevard and Karrak Drive was not publicly available. As such, the following assumptions are made:
 - » It is assumed that the nearby signalised intersection of University Boulevard and Hayman Road (with signal information available in Traffic Map) are similar in terms of signal operations and geometric design, both being a four-legged intersection,
 - » Traffic signal information from the University Boulevard and Hayman Road intersection was adopted to supplement the missing signal information at the University Boulevard/Karrak Drive intersection.
 - » The adopted signal phasing information is assumed to be also applicable in the 2029 and 2039 assessment year scenarios.
- The percentage of heavy vehicles within the immediate road network were estimated based on the traffic survey counts conducted. The estimated heavy vehicle proportions were assumed to be identical across all three assessment year scenarios.

8.5 Development Trip Generation

8.5.1 Overview

The trip generation for the Site was calculated using first principles and based on information provided by WA Hockey. The redevelopment of the Site will generate the users such as staff, visitors/spectators, and players. It should be noted that the development proposes to provide 60 onsite parking bays exclusively for the use of staff and national team players. Visitors and spectators are expected to utilise the existing Curtin University parking spaces located to the west of the Site or walk, use public transport or alternative modes to reach the Site.

This traffic generation analysis focuses on the new trips generated by the 60 parking bays as a result of the redevelopment on the existing Site. The vehicle trips of spectators and visitors associated with the in-season and off-season activities are not included in this analysis, as they are less than the number of vehicles generated by the university traffic and is assumed to be included in the existing background traffic within the road network surrounding the Curtin University.

Furthermore, the traffic impact as a result of special events have not been assessed as these events only occur rarely and do not represent the day-to-day operations for the Site. It is anticipated that access to the Site for special events would be under a separate traffic management plan.

8.5.2 Staff and National Team Players

The trip generation was computed based on the anticipated number of staff and national team players, as well as additional information provided by the client. The following information, including assumptions, were considered in this analysis:

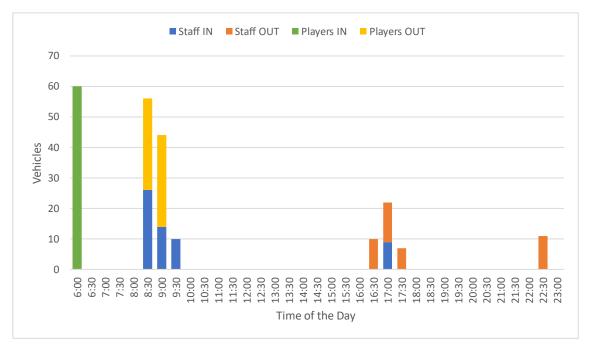
• The estimated daily influx of staff and visitors to the site comprises 35 staff members and 20 visitors (i.e., contractors, suppliers).

- Based on the ABS Census data, it is assumed that 85% of the staff will use their private cars, while the remaining 15% will opt for public transport due to the excellent availability of walking/cycling facilities and public transportation services.
- Staff are expected to gradually arrive around 8:30am and stay in the office until the late afternoon. Some staff may start to depart from the office at 4:30pm but most staff members will depart after office hours at 5:00pm.
- Approximately 10 staff members are estimated to arrive at 5:00pm and stay until 10:00pm for scheduled training sessions or evening games.
- It is anticipated that there will be 60 national team players participating in the training sessions, although on certain days, only 30 players are expected.
- It is assumed that all players will have their own cars to drive to the training sessions.
- National Team Player training sessions are conducted every day during the early morning hours between 6:00am to 8:00am, with some players possibly staying until 8:30am.

Based on the above, the peak-hour traffic generation is anticipated to commence at 6:00am when all the national team players arrive. The afternoon peak hour for the site is anticipated to commence at 5:00pm when most of the staff depart the office and when the additional 10 staff members arrive for the evening activities. The anticipated traffic to be generated by the proposed development is summarised in **Table 8-1**.

Table 8-1. Development Trip Generation - Peak Hour

	AM Peak	Period	PM Pea	ak Period
	ln	Out	In	Out
Staff	0	0	9	13
Players	60	0	0	0
Total	6	60	2	22


It should be noted that the ingress of national team players will not coincide with the staff's ingress, as their activities occur outside of the surrounding road network peak hours. Similarly, the egress of national team players will not coincide with that of the staff, as players are expected to depart the proposed development at 8:00 am, while staff members are expected to leave the site during the PM peak hour. The anticipated arrival and departure movements of each user group is graphically represented in **Figure 8-2**.

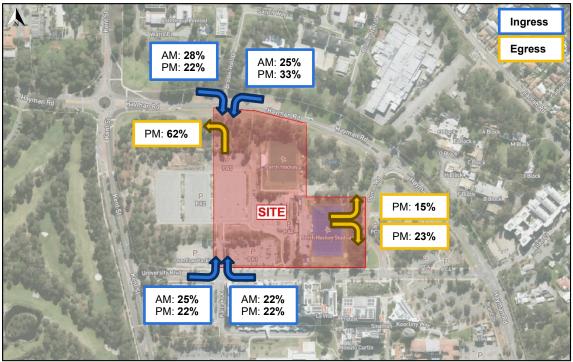
A total of 60 vehicle trips during AM peak and 22 vehicle trips during the PM peak hour trip is anticipated which represents the highest number of vehicle movements anticipated to enter and exit the subject site. There are no training sessions and hockey centre office operations on weekends as such that car parks are closed. On weekends, it is expected that staff, players, and visitors will utilise the parking facilities of Curtin University instead.

According to WAPC Transport Impact Assessment Guidelines, developments generating between 10 and 100 trips during the peak-hour periods falls under the 'moderate impact' category and is not considered to have any substantial impact on the surrounding road network.

8.5.3 Remaining Curtin University Parking

With the redevelopment of the Hockey Centre, Curtin University is anticipated to retain some of the existing parking bays on the existing Site. A remote investigation of the Site and the adjacent Curtin University car park indicates that approximately 430 parking bays will still be available after redevelopment of the hockey centre.

The traffic survey counts conducted in September 2024 includes the intersection of University Boulevard and Karrak Drive, whereby the northern leg provides the closest approximation of the existing car park's occupancy and traffic movements during the peak-hour periods. This information is detailed in **Section 1.6.2**. Curtin University car park activities have been incorporated into the background traffic. The existing car park's peak-hour volumes in 2024 were factored using a conservative growth rate to estimate the background traffic volumes for the 2029 and 2039 scenarios.


8.6 Trip Distribution

Vehicle trips have been distributed across all access points on the proposed Karrak Drive extension, taking into consideration the parking provisions and the expected origin and destination routes within the surrounding road network. Additionally, limitations on traffic movements at each access point have been considered.

Based on the turning movement from the traffic survey counts conducted in November 2023 and September 2024, **Figure 8-3** illustrates the assumed trip distribution of development generated trips.

Figure 8-3: Development Trip Distribution

Source: Metromap (base map)

8.7 Intersection Performance Analysis

The key intersections have been analysed using the SIDRA analysis software program. This program calculates the performance of intersections based on input parameters, including geometry and traffic volumes. As an output SIDRA provides values for the Degree of Saturation (DOS), queue lengths, delays, level of service, and 95th Percentile Queue. These parameters are defined as follows:

- Degree of Saturation (DOS): is the ratio of the arrival traffic flow to the capacity of the approach during the same period. The theoretical intersection capacity is exceeded for an unsignalized intersection where DOS > 0.80;
- 95% Queue: is the statistical estimate of the queue length up to or below which 95% of all observed queues would be expected;
- Average Delay: is the average of all travel time delays for vehicles through the intersection.
 An unsignalised intersection can be considered to be operating at capacity where the average delay exceeds 40 seconds for any movement; and
- Level of Service (LOS): is the qualitative measure describing operational conditions within a traffic stream and the perception by motorists and/or passengers. The different levels of service can generally be described as shown in **Table 8-2**.

44

Table 8-2. Level of Service (LoS) Performance Criteria

LOS	Description	Signalised Intersection	Unsignalised Intersection
А	Free-flow operations (best condition)	≤10 sec	≤10 sec
В	Reasonable free-flow operations	10-20 sec	10-15 sec
С	At or near free-flow operations	20-35 sec	15-25 sec
D	Decreasing free-flow levels	35-55 sec	25-35 sec
E	Operations at capacity	55-80 sec	35-50 sec
F	A breakdown in vehicular flow (worst condition)	≥80 sec	≥50 sec

An LOS exceeding these values indicates that the road section is exceeding its practical capacity. Above these values, users of the intersection are likely to experience unsatisfactory queueing and delays during the peak hour periods.

8.7.1 Traffic Volumes

Turning movement volumes of the subject intersections for each of the peak periods for the existing (2024) and future (2039 and 2026) scenarios, with the development-generated trips, are provided in **Appendix E**. Turning volume data was sourced from the traffic survey counts and traffic volumes obtained from the Main Roads WA Traffic Map database.

8.8 SIDRA Analysis

Appendix F provides the detailed SIDRA results for each of the assessment scenarios considered.

8.8.1 Scenario 1: 2024 Existing Year

8.8.1.1 Hayman Road and Kent Street

The following presents the results of the SIDRA assessment of Kent Street and Hayman Road intersection. Figure 8-4 shows the SIDRA site layout of the intersection and the analysis results are presented in Table 8-3.

Figure 8-4: Scenario 1 – Hayman Road and Kent Street Intersection

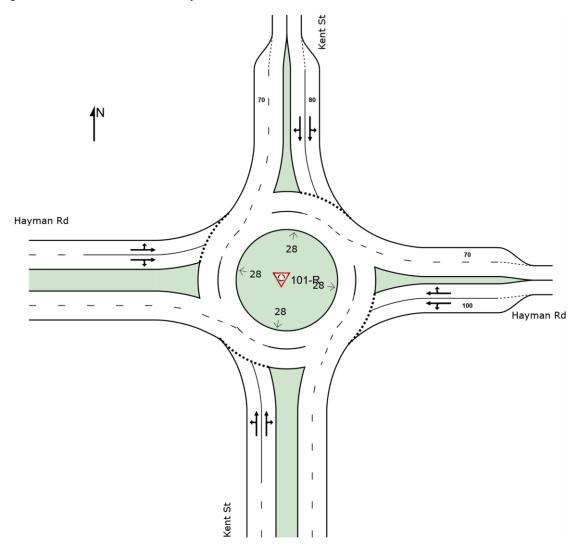
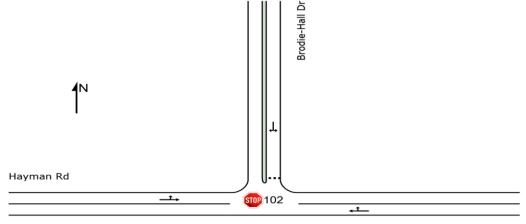


Table 8-3. Scenario 1 – Hayman Road and Kent Street Intersection

Intersecti		,	Weekday	AM pea	ak	'	Veekday	PM Pe	ak		Saturda	y Peak	OS 95% Queue (m) A 6.6				
Approach		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	Queue				
South:	L	0.43	6.8	Α	18.3	0.439	7.1	Α	19.2	0.196	5.5	Α	6.6				
Kent St	T	0.429	7.5	Α	17.9	0.408	7.7	Α	16.5	0.205	5.9	Α	6.9				
	R	0.429	13.1	В	17.9	0.408	13.3	В	16.5	0.205	11.5	В	6.9				
	Approach	0.43	7.7	Α	18.3	0.439	7.7	Α	19.2	0.205	6	Α	6.9				
East:	L	0.29	6.5	Α	11.6	0.418	7.5	Α	18.8	0.09	5.1	Α	2.8				
Hayman [–] Rd	T	0.29	6.7	Α	11.6	0.418	8	Α	18.8	0.09	5.2	Α	2.8				
	R	0.29	12.6	В	10.8	0.418	14	В	17.7	0.09	10.8	В	2.7				

46


											OF VICT ved: 07		
	Approach	0.29	7.4	Α	11.6	0.418	8.4	Α	18.8	0.09	5.4	Α	2.8
North:	L	0.411	9.1	Α	20.5	0.393	7.3	Α	17.9	0.15	5.1	Α	5.2
Kent St	T	0.411	8.3	Α	20.5	0.393	7.1	Α	17.9	0.15	4.9	Α	5.2
	R	0.411	14.5	В	19.1	0.393	13	В	17	0.15	10.5	В	5
	Approach	0.411	10.1	В	20.5	0.393	8.2	Α	17.9	0.15	6.5	Α	5.2
West:	L	0.383	8.5	Α	16.7	0.31	7.8	Α	12.7	0.133	6.3	Α	4.6
Hayman Rd	T	0.698	9.5	Α	57.8	0.564	7.6	Α	34	0.243	6	Α	9.5
	R	0.698	15.3	В	57.8	0.564	13	В	34	0.243	11.5	В	9.5
	Approach	0.698	11.5	В	57.8	0.564	10.2	В	34	0.243	8.5	Α	9.5
All Vehicles		0.698	9.5	Α	57.8	0.564	8.7	A	34	0.243	6.8	A	9.5

The results indicate that this intersection is performing satisfactorily for all peak hour periods.

8.8.1.2 Hayman Road and Brodie-Hall Drive

The following presents the results of the SIDRA assessment of Hayman Road and Brodie-Hall Drive intersection. Figure 8-5 shows the SIDRA site layout of the intersection and the analysis results are presented in Table 8-4.

Figure 8-5: Scenario 1 – Hayman Road and Brodie-Hall Drive Intersection

Hayman Rd

Table 8-4. Scenario 1 – Hayman Road and Brodie-Hall Drive Intersection

Intersecti		V	Veekday	AM pea	ak	V	Veekday	PM Pe	ak		Saturda	y Peak	
Approach		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)
East:	T	0.313	0.9	Α	5.8	0.302	0	Α	0.1	0.099	0	Α	0.1
Hayman Rd	R	0.313	9.7	Α	5.8	0.302	5.7	Α	0.1	0.099	5.6	Α	0.1
	Approach	0.313	1.8	Α	5.8	0.302	0	Α	0.1	0.099	0	Α	0.1
North:	L	0.004	7	Α	0.1	0.226	6.6	Α	5.8	0.002	5.1	Α	0
Brodie- Hall Dr	R	0.004	14.1	В	0.1	0.226	14.1	В	5.8	0.002	6.9	Α	0
	Approach	0.004	10.5	В	0.1	0.226	9.8	Α	5.8	0.002	6	Α	0
West:	L	0.347	5.6	Α	0	0.227	5.6	Α	0	0.106	5.6	Α	0
Hayman - Rd	T	0.347	0.1	Α	0	0.227	0	Α	0	0.106	0	Α	0
	Approach	0.347	0.6	Α	0	0.227	0	Α	0	0.106	0.2	Α	0
All Ve	ehicles	0.347	1.1	Α	5.8	0.302	1.2	Α	5.8	0.106	0.1	A	0.1

The results indicate that this intersection is performing satisfactorily for all the peak hour periods.

8.8.1.3 Hayman Road and Dumas Road

The following presents the results of the SIDRA assessment of Hayman Road and Dumas Road intersection. Figure 8-6 shows the SIDRA site layout of the intersection and the analysis results are presented in Table 8-5.

Figure 8-6: Scenario 1 – Hayman Road and Dumas Road Intersection

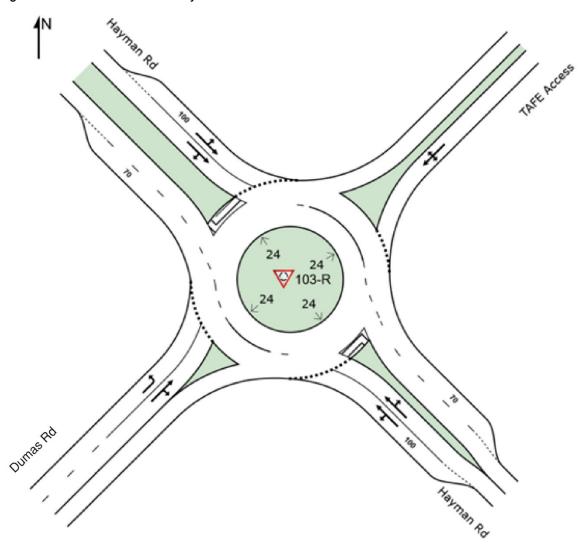


Table 8-5. Scenario 1 – Hayman Road and Dumas Road Intersection

Intersection	1	V	Weekday	AM pe	ak	١	Weekday PM Peak				Saturday Peak			
Approach		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	
SouthEast: Hayman Rd	L	0.157	4.2	Α	6.4	0.093	4.2	Α	3.7	0.038	4	Α	1.4	
	T	0.307	4.4	Α	14.8	0.182	4.3	Α	8	0.075	3.9	Α	2.9	
	R	0.307	9.1	Α	14.8	0.182	9.1	Α	8	0.075	8.9	Α	2.9	
	Approach	0.307	5.1	Α	14.8	0.182	4.3	Α	8	0.075	4	Α	2.9	
NorthEast:	L	0.037	5	Α	1.1	0.067	5.5	Α	1.9	0.004	3.4	Α	0.1	
TAFE Access	T	0.037	4.1	Α	1.1	0.067	4.5	Α	1.9	0.004	3.1	Α	0.1	
	R	0.037	9	Α	1.1	0.067	9.4	Α	1.9	0.004	8	Α	0.1	

49

										TOWN (OF VICT red: 07		
	Approach	0.037	6.8	Α	1.1	0.067	7.6	Α	1.9	0.004	5.6	Α	0.1
NorthWest:	L	0.132	4.6	Α	5.3	0.121	4	Α	5.1	0.04	4	Α	1.5
Hayman Rd	T	0.258	4.5	Α	11.8	0.236	4.1	Α	11.5	0.078	3.9	Α	3
	R	0.258	9.4	Α	11.8	0.236	9	Α	11.5	0.078	8.9	Α	3
	Approach	0.258	4.7	Α	11.8	0.236	4.3	Α	11.5	0.078	4	Α	3
SouthWest:	L	0.028	6.5	Α	1	0.072	5	Α	2.3	0.004	3.8	Α	0.1
Dumas Rd	Т	0.004	7.2	Α	0.1	0.01	5.1	Α	0.3	0.002	3.3	Α	0.1
	R	0.004	12.2	В	0.1	0.01	10	В	0.3	0.002	8.3	Α	0.1
	Approach	0.028	6.8	Α	1	0.072	5.3	Α	2.3	0.004	4.5	Α	0.1
All Vehicles		0.307	5	A	14.8	0.236	4.5	A	11.5	0.078	4.0	A	3

The results indicate that this intersection is performing satisfactorily for all peak hour periods.

8.8.1.4 University Boulevard and Kent Street

The following presents the results of the SIDRA assessment of University Boulevard and Kent Street intersection. Figure 8-7 shows the SIDRA layout of the intersection and the analysis results are presented in Table 8-6.

Figure 8-7: Scenario 1 – University Boulevard and Kent Street Intersection

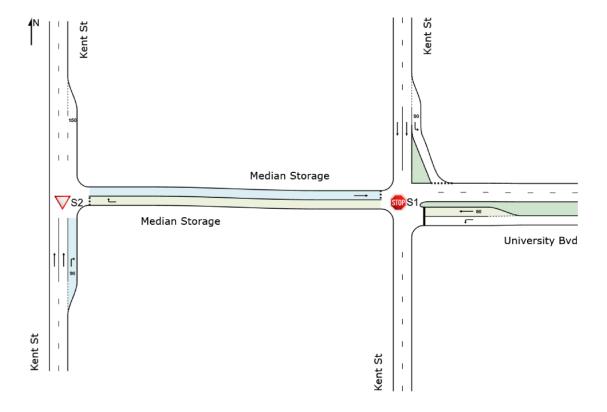


Table 8-6. Scenario 1 – University Boulevard and Kent Street Intersection

Intersection			Weekday	AM pe	ak		Weekday	PM Pe	ak		Saturd	ay Peal	(
Approach		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)
East:	L	0.072	10.3	В	2.3	0.35	12.2	В	5.7	0.086	9.4	Α	2.8
University Bvd	Т	0.116	26.6	D	4.4	0.42	29.6	D	4.6	0.036	16.2	С	3.6
North:	L	0.11	7.2	Α	3.3	0.089	6.8	Α	1.1	0.022	7.1	Α	0.6
Kent St	T	0.172	0	Α	0	0.241	0	Α	0	0.112	0	Α	0
South:	T	0.217	0	Α	0	0.175	0	Α	0	0.122	0	Α	0
Kent St	R	0.11	9.5	Α	3.3	0.089	11.3	В	1.1	0.076	8.1	Α	0.6
All Vehicle	S	0.217	2.1	Α	4.4	0.42	3.8	Α	5.7	0.122	2.1	Α	3.6

The results indicate that this intersection is performing adequately during all the peak hour periods. The longest delay is anticipated during the PM peak period with an average of 29.6 seconds for right-turning traffic from University Boulevard into Kent Street.

8.8.1.5 University Boulevard and Karrak Drive

The following presents the results of the SIDRA assessment of University Boulevard and Karrak Drive intersection. Figure 8-8 shows the SIDRA site layout of the intersection and the analysis results are presented in Table 8-7.

Figure 8-8: Scenario 1 – University Boulevard and Karrak Drive Intersection

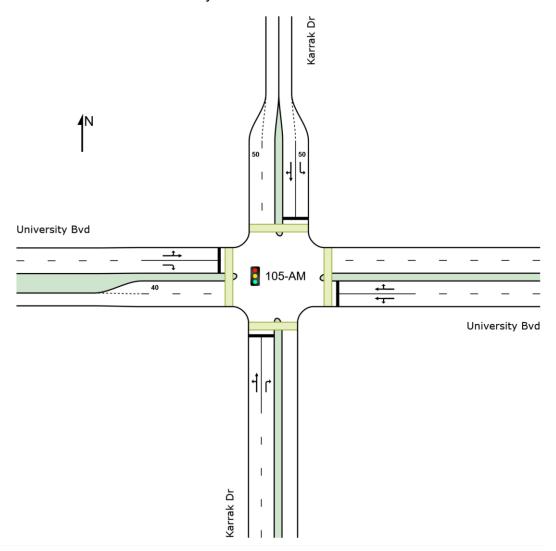


Table 8-7. Scenario 1 – University Boulevard and Karrak Drive Intersection

Intersectio	n		Weekday	AM pe	ak		Weekday	PM Pe	ak		Saturd	ay Peak	(
Approach		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)
South:	L	0.215	38.4	D	14.3	0.121	24.2	С	7.2	0.074	37.8	D	4.7
Karrak Dr	T	0.215	33.9	С	14.3	0.121	19.7	В	7.2	0.074	33.3	С	4.7
	R	0.195	40.1	D	14	0.095	25.5	С	6.2	0.056	39.5	D	3.9
	Approach	0.215	37.8	D	14.3	0.121	24.2	С	7.2	0.074	37.3	D	4.7
East:	L	0.11	8.3	Α	15.1	0.363	8.9	Α	35.5	0.078	6.6	Α	10.3
University Bvd	Т	0.11	12.1	В	15.1	0.363	15.7	В	35.5	0.078	8.1	Α	10.3
	R	0.133	18.3	В	12	0.107	20	В	6.8	0.047	13.6	В	4.2

											OF VICT		
	Approach	0.133	13.6	В	15.1	0.363	15.1	В	35.5	0.078	9.4	Α	10.3
North:	L	0.043	35	D	3.1	0.162	24.4	С	9.7	0.041	38.6	D	2.4
Karrak Dr	Т	0.039	30.4	С	2.8	0.396	21.1	С	25.3	0.169	35	D	10
	R	0.039	35.1	D	2.8	0.396	26.1	С	25.3	0.169	39.7	D	10
	Approach	0.043	34.9	С	3.1	0.396	25.5	С	25.3	0.169	39.4	D	10
West:	L	0.27	15.8	В	41.6	0.27	18.5	В	25.4	0.162	12.7	В	22.5
University Bvd	Т	0.270	10.9	В	41.6	0.27	13.8	В	25.4	0.162	8	Α	22.5
	R	0.057	15.4	В	5.6	0.078	21.6	С	4.2	0.019	12.4	В	1.7
	Approach	0.27	13.4	В	41.6	0.27	15.6	В	25.4	0.162	11.1	В	22.5
All Ve	hicles	0.27	18.2	В	41.6	0.396	18.9	В	35.5	0.169	16.2	В	22.5

The results indicate that this intersection is performing at acceptable levels of service during all the peak hour periods.

8.8.1.6 University Boulevard and Dumas Road

The following presents the results of the SIDRA assessment of University Boulevard and Dumas Road intersection. Figure 8-9 shows the SIDRA site layout of the intersection and the analysis results are presented in Table 8-8.

Figure 8-9: Scenario 1 – University Boulevard and Dumas Road Intersection

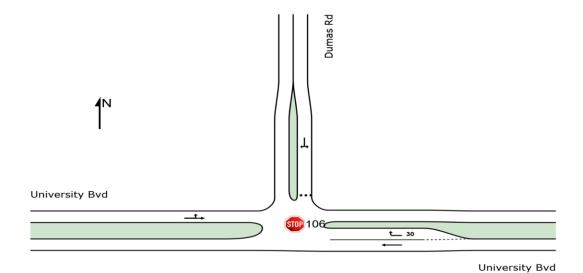


Table 8-8. Scenario 1 – University Boulevard and Dumas Road

Intersection	n	,	Weekday	AM pe	ak	,	Weekday	PM Pe	ak		Saturd	ay Peak	(
Approach		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)
East:	T	0.107	0	Α	0	0.139	0	Α	0	0.046	0	Α	0
University Bvd	R	0.045	5.3	Α	1.7	0.028	5.3	Α	0.9	0.005	4.8	Α	0.2
	Approach	0.107	1.4	Α	1.7	0.139	0.7	Α	0.9	0.046	0.4	Α	0.2
North:	L	0.057	4.9	Α	1.6	0.075	5.1	Α	2.2	0.015	4.7	Α	0.4
Dumas Rd	R	0.057	7.5	Α	1.6	0.075	8.4	Α	2.2	0.015	5.4	Α	0.4
	Approach	0.057	7.2	Α	1.6	0.075	7.1	Α	2.2	0.015	5.3	Α	0.4
West:	L	0.08	4.8	Α	0	0.098	4.7	Α	0	0.024	4.7	Α	0
University Bvd	Т	0.08	0	Α	0	0.098	0	Α	0	0.024	0	Α	0
	Approach	0.08	2.1	Α	0	0.098	1.2	Α	0	0.024	0.9	Α	0
All Vel	nicles	0.107	2.2	A	1.7	0.139	1.6	A	2.2	0.046	1.0	A	0.4

The results indicate that this intersection is performing satisfactorily during all the peak hour periods.

8.8.2 Scenario 2: 2029 Traffic with Development Traffic

8.8.2.1 Hayman Road and Kent Street

The following presents the results of the SIDRA assessment of Kent Street and Hayman Road intersection. SIDRA site layout of this intersection for Scenario 2 is similar to Scenario 1. The analysis results are presented in Table 8-9.

Table 8-9. Scenario 2 – Hayman Road and Kent Street Intersection

Intersecti		·	Veekday	AM pea	ak	V	Veekday	PM Pea	ak		Saturda	y Peak	
Approach		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)
South:	L	0.464	7.2	Α	21.1	0.508	8	Α	24.8	0.211	5.7	Α	7.2
Kent St	T	0.467	8	Α	20.8	0.484	8.9	Α	21.6	0.223	6	Α	7.6
	R	0.467	13.6	В	20.8	0.484	14.5	В	21.6	0.223	11.6	В	7.6
	Approach	0.467	8.1	Α	21.1	0.508	8.7	Α	24.8	0.223	6.2	Α	7.6
East:	L	0.325	6.7	Α	13.4	0.542	8.9	Α	29	0.109	5.2	Α	3.5
Hayman Rd	T	0.325	6.9	Α	13.4	0.542	9.4	Α	29	0.109	5.2	Α	3.5
	R	0.325	12.8	В	12.4	0.542	15.7	В	26.7	0.109	10.9	В	3.4
	U	0.325	15.2	В	12.4	0.542	18	В	26.7	0.109	13.2	В	3.4

Australian Hockey Centre

8 Transport Analysis

											OF VICT ved: 07		
	Approach	0.325	7.8	Α	13.4	0.542	10.7	В	29	0.109	6.2	Α	3.5
North:	L	0.474	10.5	В	26.1	0.471	9.4	Α	25.1	0.163	5.4	Α	5.7
Kent St	Т	0.474	9.6	Α	26.1	0.471	8.9	Α	25.1	0.163	5.1	Α	5.7
	R	0.474	16	В	23.8	0.471	15.1	В	23.3	0.163	10.7	В	5.6
	Approach	0.474	11.4	В	26.1	0.471	10.1	В	25.1	0.163	6.7	Α	5.7
West:	L	0.42	8.9	Α	19.1	0.352	8.5	Α	15	0.143	6.5	Α	4.9
Hayman Rd	Т	0.765	11	В	75.1	0.642	9.2	Α	47.1	0.261	6.2	Α	10.4
	R	0.765	17.2	В	75.1	0.642	14.9	В	47.1	0.261	11.6	В	10.4
	Approach	0.765	12.9	В	75.1	0.642	11.8	В	47.1	0.261	8.7	Α	10.4
All Vo	ehicles	0.765	10.4	В	75.1	0.642	10.4	В	47.1	0.261	7.0	Α	10.4

The results indicate that this intersection will still perform adequately during all the peak hour periods assessed with slightly longer delays anticipated.

8.8.2.2 Hayman Road and Karrak Drive

The following presents the results of the SIDRA assessment of Hayman Road, Karrak Drive, and Brodie-Hall Drive intersection. Figure 8-10 shows the SIDRA site layout of the intersection and the analysis results are presented in Table 8-10.

Figure 8-10: Scenario 2 – Hayman Road and Karrak Drive Intersection

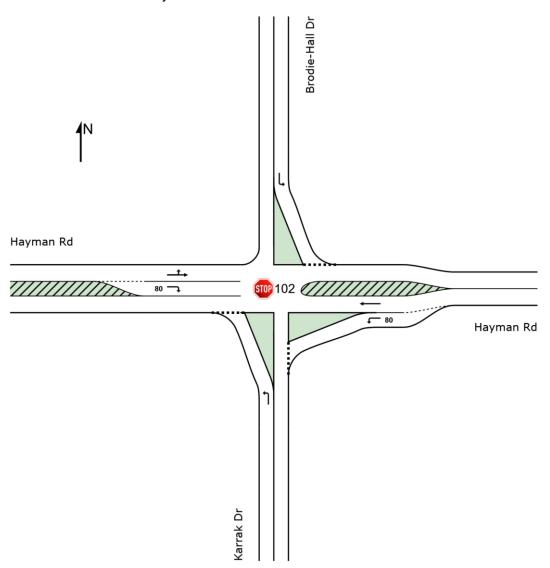


Table 8-10. Scenario 2 – Hayman Road and Karrak Drive Intersection

Intersecti		V	Veekday	AM pe	ak	V	Veekday	PM Pea	ak		Saturda	y Peak	
Approach		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)
South:	L	0.026	6.5	Α	0.7	0.255	7.5	Α	7.6	0.036	5	Α	1
Karrak Dr	Approach	0.026	6.5	Α	0.7	0.255	7.5	Α	7.6	0.036	5	Α	1
East:	L	0.018	5.7	Α	0.5	0.076	6	Α	2.3	0.016	5.7	Α	0.5
Hayman Rd	T	0.244	0	Α	0	0.284	0.1	Α	0	0.088	0	Α	0
	Approach	0.244	0.4	Α	0.5	0.284	1	Α	2.3	0.088	0.7	Α	0.5
	L	0.016	7.6	Α	0.4	0.186	6.6	Α	5.4	0.019	5.1	Α	0.5

										TOWN (Receiv	OF VICT ved: 07		
North: Brodie- Hall Dr	Approach	0.016	7.6	А	0.4	0.186	6.6	A	5.4	0.019	5.1	A	0.5
West:	L	0.355	5.6	Α	0	0.231	5.6	Α	0	0.108	5.6	Α	0
Hayman Rd	Т	0.355	0.1	Α	0	0.231	0	Α	0	0.108	0	Α	0
	R	0.029	7.5	Α	0.8	0.117	8.1	Α	3.5	0.017	6	Α	0.5
	Approach	0.355	0.8	Α	0.8	0.231	1.6	Α	3.5	0.108	0.8	Α	0.5
All V	ehicles	0.355	0.8	Α	0.8	0.284	2.8	A	7.6	0.108	1.4	A	1

The results indicate that this intersection will perform satisfactorily during all the peak hour periods.

8.8.2.3 Hayman Road and Dumas Road

The following presents the results of the SIDRA assessment of Hayman Road and Dumas Road intersection. SIDRA site layout of this intersection for Scenario 2 is similar to Scenario 1. The results are presented in Table 8-11.

Table 8-11. Scenario 2 – Hayman Road and Dumas Road Intersection

Intersection A	pproach	V	Veekday	AM pe	eak	V	Veekday	PM Pe	eak		Saturd	ay Pea	k
		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)
SouthEast:	L	0.169	4.2	Α	7	0.099	4.2	Α	4	0.04	4	Α	1.5
Hayman Rd	Т	0.329	4.4	Α	16.4	0.193	4.3	Α	8.6	0.078	3.9	Α	3
	R	0.329	9.1	Α	16.4	0.193	9.1	Α	8.6	0.078	8.9	Α	3
	Approach	0.329	5.1	Α	16.4	0.193	4.3	Α	8.6	0.078	4	Α	3
NorthEast:	L	0.041	5.2	Α	1.2	0.077	6.3	Α	2.2	0.004	3.6	Α	0.1
TAFE Access	T	0.041	4.2	Α	1.2	0.077	4.9	Α	2.2	0.004	3.2	Α	0.1
	R	0.041	9.2	Α	1.2	0.077	9.9	Α	2.2	0.004	8.1	Α	0.1
	Approach	0.041	7	Α	1.2	0.077	8.2	Α	2.2	0.004	5.7	Α	0.1
NorthWest:	L	0.143	4.7	Α	5.7	0.149	4	Α	6.6	0.047	4	Α	1.7
Hayman Rd	T	0.278	4.6	Α	13	0.291	4.3	Α	15.2	0.091	3.9	Α	3.5
	R	0.278	9.4	Α	13	0.291	9	Α	15.2	0.091	8.9	Α	3.5
	Approach	0.278	4.8	Α	13	0.291	4.4	Α	15.2	0.091	4	Α	3.5
SouthWest:	L	0.03	6.8	Α	1.1	0.076	5.1	Α	2.5	0.004	3.8	Α	0.1
Duams Rd	Т	0.004	7.4	Α	0.1	0.013	5.2	Α	0.4	0.002	3.4	Α	0.1
	R	0.004	12.5	В	0.1	0.013	10.2	В	0.4	0.002	8.4	Α	0.1
	Approach	0.03	7.1	Α	1.1	0.076	5.5	Α	2.5	0.004	4.5	Α	0.1
All Vehi	cles	0.329	5.1	A	16.4	0.291	4.6	Α	15.2	0.091	4.0	A	3.5

The results indicate that this intersection will perform satisfactorily during all the peak hour periods.

8.8.2.4 University Boulevard and Kent Street

The following presents the results of the SIDRA assessment of University Boulevard and Kent Street intersection. SIDRA site layout of this intersection for Scenario 2 is similar to Scenario 1. The results are presented in Table 8-12.

Table 8-12. Scenario 2 – University Boulevard and Kent Street Intersection

Intersection			Weekday	AM pe	ak		Weekday	PM Pe	ak		Saturd	ay Peal	<
Approach		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)
East:	L	0.077	10.4	В	2.5	0.387	13	В	16.5	0.092	9.5	Α	3
University Bvd	T	0.132	28.9	D	5.4	0.526	34.2	D	14	0.04	16.8	С	3.9
North: Kent	L	0.119	7.3	Α	3.6	0.094	6.9	Α	2.8	0.023	7.1	Α	0.6
St	T	0.181	0	Α	0	0.258	0	Α	0	0.119	0	Α	0
South: Kent	T	0.229	0.1	Α	0	0.184	0	Α	0	0.128	0	Α	0
St	R	0.119	9.8	Α	3.6	0.094	12	В	2.8	0.08	8.2	Α	0.6
All Vehicles	3	0.229	2.3	A	5.4	0.526	4.1	A	16.5	0.128	2.1	Α	3.9

The results indicate that this intersection will perform adequately during all the peak hour periods. The longest delay is still anticipated during the PM peak period with an average of 34.2 seconds for right-turning traffic from University Boulevard into Kent Street.

8.8.2.5 University Boulevard and Karrak Drive

The following presents the results of the SIDRA assessment of University Boulevard and Karrak Drive intersection. SIDRA site layout of this intersection for Scenario 2 is similar to Scenario 1. The results are presented in Table 8-13.

Table 8-13. Scenario 2 – University Boulevard and Karrak Drive Intersection

Intersectio	n	_	Weekday	AM pe	ak	,	Weekday	PM Pe	ak		Saturda	ay Peak	(
Approach		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)
South:	L	0.227	38.5	D	15.1	0.127	24.2	С	7.6	0.078	37.9	D	5
Karrak Dr	Т	0.227	34	С	15.1	0.127	19.7	В	7.6	0.078	33.3	С	5
	R	0.202	40.2	D	14.5	0.1	25.5	С	6.6	0.056	39.5	D	3.9
	Approach	0.227	37.8	D	15.1	0.127	24.3	С	7.6	0.078	37.3	D	5
	L	0.116	8.3	Α	15.9	0.388	8.9	Α	38.3	0.082	6.6	Α	10.9
	Т	0.116	12.2	В	15.9	0.388	15.9	В	38.3	0.082	8.2	Α	10.9

58

8 Transport Analysis

											OF VICTived: 07		
East:	R	0.179	19.3	В	16.1	0.114	19.9	В	7	0.049	13.6	В	4.4
University Bvd	Approach	0.179	14.5	В	16.1	0.388	15.3	В	38.3	0.082	9.4	Α	10.9
North:	L	0.046	35.1	D	3.3	0.17	24.5	С	10.2	0.041	38.6	D	2.4
Karrak Dr	Т	0.043	30.4	С	3.1	0.416	21.2	С	26.7	0.178	35.1	D	10.6
	R	0.043	35.2	D	3.1	0.416	26.3	С	26.7	0.178	39.8	D	10.6
	Approach	0.046	34.9	С	3.3	0.416	25.6	С	26.7	0.178	39.5	D	10.6
West:	L	0.302	16	В	47.3	0.287	18.6	В	27.1	0.17	12.8	В	23.8
University Bvd	T	0.302	11.1	В	47.3	0.287	13.9	В	27.1	0.170	8.1	Α	23.8
	R	0.061	15.4	В	6	0.083	21.6	С	4.4	0.02	12.4	В	1.9
	Approach	0.302	13.8	В	47.3	0.287	15.7	В	27.1	0.17	11.2	В	23.8
All Vel	hicles	0.302	18.4	В	47.3	0.416	19.0	В	38.3	0.178	16.2	В	23.8

The results indicate that this intersection will perform at acceptable levels of service during all the peak hour periods.

8.8.2.6 University Boulevard and Dumas Road

The following presents the results of the SIDRA assessment of University Boulevard and Dumas Road intersection. SIDRA site layout of this intersection for Scenario 2 is similar to Scenario 1. The results are presented in Table 8-14.

Table 8-14. Scenario 2 – University Boulevard and Dumas Road

Intersection	n	Weekday AM peak					Weekday	PM Pe	ak		Saturd	ay Peak	(
Approach		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)
East:	T	0.12	0	Α	0	0.147	0	Α	0	0.049	0	Α	0
University Bvd	R	0.048	5.4	Α	1.8	0.03	5.3	Α	1	0.005	4.8	Α	0.2
	Approach	0.12	1.3	Α	1.8	0.147	0.8	Α	1	0.049	0.4	Α	0.2
North:	L	0.063	4.9	Α	1.8	0.084	5.1	Α	2.4	0.016	4.8	Α	0.5
Dumas Rd	R	0.063	7.8	Α	1.8	0.084	8.7	Α	2.4	0.016	5.4	A A A A A A	0.5
	Approach	0.063	7.6	Α	1.8	0.084	7.3	Α	2.4	0.016	5.3	Α	0.5
West:	L	0.085	4.8	Α	0	0.103	4.7	Α	0	0.026	4.7	Α	0
University Bvd	Т	0.085	0	Α	0	0.103	0	Α	0	0.026	0	Α	0
	Approach	0.085	2.1	Α	0	0.103	1.2	Α	0	0.026	0.9	A	0
All Vel	nicles	0.12	2.2	Α	1.8	0.147	1.7	A	2.4	0.049	1.0	A	0.5

The results indicate that this intersection will still perform satisfactorily during all the peak hour periods.

8.8.3 Scenario 3: 2039 Traffic with Development Traffic

8.8.3.1 Hayman Road and Kent Street

The following presents the results of the SIDRA assessment of Kent Street and Hayman Road intersection. SIDRA site layout of this intersection for Scenario 3 is similar to Scenario 1. The analysis results are presented in Table 8-15.

Table 8-15. Scenario 3 – Hayman Road and Kent Street Intersection

Intersecti	on	1	Weekday	AM pea	ık	١	Veekday	PM Pe	ak		Saturday Peak		
Approach		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)
South:	L	0.529	7.8	Α	26.9	0.596	8.9	Α	32.6	0.236	5.8	Α	8.2
Kent St	Т	0.538	8.8	Α	26.7	0.575	10.1	В	28.6	0.25	6.2	Α	8.7
	R	0.538	14.4	В	26.7	0.575	15.7	В	28.6	0.25	11.7	В	8.7
	Approach	0.538	8.9	Α	26.9	0.596	9.8	Α	32.6	0.25	6.3	Α	8.7
East: Hayman Rd	L	0.385	7.3	Α	17.2	0.653	11.2	В	40.8	0.123	5.3	Α	4
	Т	0.385	7.7	Α	17.2	0.653	11.8	В	40.8	0.123	5.4	Α	4
T.u	R	0.385	13.8	В	16.1	0.653	18.4	В	36.6	0.123	11.1	В	3.9
	U	0.385	16.1	В	16.1	0.653	20.7	С	36.6	0.123	13.4	В	3.9
	Approach	0.385	8.6	Α	17.2	0.653	13.2	В	40.8	0.123	6.4	Α	4
North:	L	0.599	13.8	В	38.8	0.583	11.9	В	36.8	0.183	5.6	Α	6.6
Kent St	Т	0.599	12.8	В	38.8	0.583	11.4	В	36.8	0.183	5.2	Α	6.6
	R	0.599	19.6	В	34.5	0.583	17.8	В	33.2	0.183	10.9	В	6.4
	Approach	0.599	14.7	В	38.8	0.583	12.6	В	36.8	0.183	6.9	Α	6.6
West:	L	0.485	10.2	В	25.2	0.408	9.2	Α	18.6	0.161	6.7	Α	5.7
Hayman Rd	Т	0.883	16	В	129.1	0.744	11.1	В	69.5	0.293	6.4	Α	12.2
	R	0.883	23.5	С	129.1	0.744	17.5	В	69.5	0.293	11.8	В	12.2
-	Approach	0.883	17.8	В	129.1	0.744	13.8	В	69.5	0.293	8.8	Α	12.2
All Ve	ehicles	0.883	13.2	В	129.1	0.744	12.4	В	69.5	0.293	7.2	Α	12.2

The results indicate that this intersection will still perform adequately during all he peak hour periods assessed, with slightly longer delays anticipated. However, significant queueing on the west approach is anticipated for the through and right-turning vehicles in the AM peak period.

8.8.3.2 Hayman Road and Karrak Drive

The following presents the results of the SIDRA assessment of Hayman Road, Karrak Drive, and Brodie-Hall Drive intersection. SIDRA site layout of this intersection for Scenario 3 is similar to Scenario 2. The analysis results are presented in Table 8-16.

Table 8-16. Scenario 3 – Hayman Road and Karrak Drive Intersection

Intersecti	on	'	Weekday	AM pe	ak	V	Veekday	PM Pe	ak		Saturda	A A A A A A A A A A A A A A A A A A A	
Approach		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)		95% Queue (m)
South:	L	0.031	6.8	Α	0.8	0.303	8.3	Α	9.8	0.04	5.1	Α	1.1
Karrak Dr	Approach	0.031	6.8	Α	0.8	0.303	8.3	Α	9.8	0.04	5.1	Α	1.1
East:	L	0.019	5.7	Α	0.5	0.084	6	Α	2.5	0.017	5.7	Α	0.5
Hayman Rd	T	0.268	0	Α	0	0.312	0.1	Α	0	0.097	0	Α	0
	Approach	0.268	0.4	Α	0.5	0.312	1	Α	2.5	0.097	0.7	7 A	0.5
North:	L	0.02	8.1	Α	0.5	0.217	6.9	Α	6.3	0.021	5.2	Α	0.6
Brodie- Hall Dr	Approach	0.02	8.1	Α	0.5	0.217	6.9	Α	6.3	0.021	5.2	Α	0.6
West:	L	0.39	5.6	Α	0	0.254	5.6	Α	0	0.119	5.6	Α	0
Hayman Rd	Т	0.39	0.1	Α	0	0.254	0	Α	0	0.119	0	Α	0
	R	0.032	7.8	Α	0.9	0.138	8.6	Α	4.1	0.018	6.1	Α	0.6
	Approach	0.39	0.8	Α	0.9	0.254	1.7	Α	4.1	0.119	0.8	Α	0.6
All Ve	ehicles	0.39	0.8	A	0.9	0.312	2.9	A	9.8	0.119	1.4	A	1.1

The results indicate that this intersection will still perform satisfactorily during all the peak hour periods.

8.8.3.3 Hayman Road and Dumas Road

The following presents the results of the SIDRA assessment of Hayman Road and Dumas Road intersection. SIDRA site layout of this intersection for Scenario 3 is similar to Scenario 1. The results are presented in Table 8-17.

Table 8-17. Scenario 3 – Hayman Road and Dumas Road Intersection

Intersection A	Approach	W	/eekday	AM pe	ak	W	leekday	PM Pe	ak	Saturday Peak			
		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)
SouthEast:	L	0.187	4.2	Α	7.8	0.11	4.3	Α	4.4	0.044	4	Α	1.7
Hayman Rd	Т	0.364	4.5	Α	18.9	0.214	4.4	Α	9.8	0.086	3.9	Α	3.4
	R	0.364	9.1	Α	18.9	0.214	9.2	Α	9.8	0.086	8.9	Α	3.4
	Approach	0.364	5.2	Α	18.9	0.214	4.4	Α	9.8	0.086	4	Α	3.4
NorthEast:	L	0.046	5.5	Α	1.4	0.086	6.8	Α	2.5	0.004	3.7	Α	0.1
TAFE Access	Т	0.046	4.4	Α	1.4	0.086	5.2	Α	2.5	0.004	3.2	Α	0.1
	R	0.046	9.4	Α	1.4	0.086	10.1	В	2.5	0.004	8.2	Α	0.1
	Approach	0.046	7.2	Α	1.4	0.086	8.6	Α	2.5	0.004	5.8	Α	0.1
NorthWest:	L	0.159	4.7	Α	6.5	0.165	4	Α	7.4	0.051	4	Α	1.9
Hayman Rd	Т	0.31	4.7	Α	15	0.321	4.3	Α	17.6	0.1	4	Α	4
	R	0.31	9.5	Α	15	0.321	9	Α	17.6	0.1	8.9	Α	4
	Approach	0.31	4.9	Α	15	0.321	4.4	Α	17.6	0.1	4	Α	4
SouthWest:	L	0.035	7.3	Α	1.3	0.086	5.4	Α	2.8	0.004	3.9	Α	0.1
Dumas Rd	T	0.005	7.8	Α	0.2	0.015	5.4	Α	0.4	0.002	3.6	Α	0.1
	R	0.005	12.9	В	0.2	0.015	10.4	В	0.4	0.002	8.6	Α	0.1
	Approach	0.035	7.5	Α	1.3	0.086	5.8	Α	2.8	0.004	4.5	Α	0.1
All Vehi	cles	0.364	5.2	A	18.9	0.321	4.7	A	17.6	0.1	4.0	A	4

The results indicate that this intersection will still perform satisfactorily during all the peak hour periods.

8.8.3.4 University Boulevard and Kent Street

The following presents the results of the SIDRA assessment of University Boulevard and Kent Street intersection. SIDRA site layout of this intersection for Scenario 3 is similar to Scenario 1. The results are presented in Table 8-18.

Table 8-18. Scenario 3 – University Boulevard and Kent Street Intersection

Intersection			Weekday	AM pe	ak		Weekday	PM Pe	ak		Saturd	ay Peal	(
Approach		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)
East:	L	0.089	10.8	В	2.8	0.462	14.4	В	21.4	0.104	9.6	Α	3.4
University Bvd	Т	0.173	33.5	D	6.7	0.786	48.2	E	22	0.047	18.1	LOS	4.6
North: Kent	L	0.132	7.4	Α	4	0.104	6.9	Α	3.1	0.026	7.2	Α	0.7
St	Т	0.199	0	Α	0	0.285	0.1	Α	0	0.131	0	A C A A A	0
South: Kent	Т	0.252	0.1	Α	0	0.203	0	Α	0	0.141	0	Α	0
St	R	0.132	10.6	В	4	0.104	13.3	В	3.1	0.088	8.5	Α	0.7
All Vehicles	S	0.252	2.5	A	6.7	0.786	5.1	A	22	0.141	2.2	A	4.6

The results indicate that this intersection will perform adequately during all the peak hour periods. The longest delay is still anticipated during the PM peak period with an average of 48.2 seconds for right-turning traffic from University Boulevard into Kent Street.

8.8.3.5 University Boulevard and Karrak Drive

The following presents the results of the SIDRA assessment of University Boulevard and Karrak Drive intersection. SIDRA site layout of this intersection for Scenario 3 is similar to Scenario 1. The results are presented in Table 8-19.

Table 8-19. Scenario 3 – University Boulevard and Karrak Drive Intersection

Intersection	on	١	Weekday	AM pe	ak	١	Veekday	PM Pe	ak		Saturda	y Peak	
Approach		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)
South:	L	0.248	38.6	D	16.5	0.141	24.3	С	8.5	0.086	37.9	•	5.5
Karrak Dr	Т	0.248	34.2	С	16.5	0.141	19.8	В	8.5	0.086	33.4	С	5.5
	R	0.223	40.3	D	16.1	0.11	25.6	С	7.2	0.064	39.5	D	4.4
	Approach	0.248	38	D	16.5	0.141	24.3	С	8.5	0.086	37.4	D	5.5
East:	L	0.127	8.3	Α	17.6	0.43	9	Α	43.3	0.09	6.6	Α	12
University Bvd	Т	0.127	12.3	В	17.6	0.430	16.2	В	43.3	0.09	8.2	Α	12
	R	0.203	19.6	В	17.6	0.126	20.9	С	7.7	0.056	14.1	В	5
	Approach	0.203	14.5	В	17.6	0.43	15.6	В	43.3	0.09	9.6	Α	12
North:	L	0.050	35.1	D	3.6	0.187	24.6	С	11.3	0.046	38.6	D	2.6
Karrak Dr	Т	0.046	30.5	С	3.3	0.459	21.4	С	29.8	0.197	35.2	14.1 B 9.6 A 38.6 D	11.7

63

											OF VICT ved: 07		
	R	0.046	35.2	D	3.3	0.459	26.6	С	29.8	0.197	39.9	D	11.7
	Approach	0.05	35	С	3.6	0.459	25.9	С	29.8	0.197	39.6	D	11.7
West:	L	0.33	16.3	В	52.8	0.315	18.8	В	30.2	0.187	12.9	В	26.5
University Bvd	Т	0.330	11.3	В	52.8	0.315	14.1	В	30.2	0.187	8.2	Α	26.5
	R	0.067	15.5	В	6.5	0.099	22.6	С	5	0.022	12.4	В	2
	Approach	0.33	14	В	52.8	0.315	15.9	В	30.2	0.187	11.3	В	26.5
All Ve	hicles	0.33	18.6	В	52.8	0.459	19.3	В	43.3	0.197	16.4	В	26.5

The results indicate that this intersection will still perform at acceptable levels of service during all the peak hour periods assessed, with slightly longer delays anticipated.

8.8.3.6 University Boulevard and Dumas Road

The following presents the results of the SIDRA assessment of University Boulevard and Dumas Road intersection. SIDRA site layout of this intersection for Scenario 3 is similar to Scenario 1. The results are presented in Table 8-20.

Table 8-20. Scenario 3 – University Boulevard and Dumas Road

Intersection	n	1	Weekday	AM pea	ak	V	Veekday	PM Pe	ak	Saturday I		y Peak	
Approach		DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)	DOS	Delay (Sec)	LOS	95% Queue (m)
East:	T	0.132	0	Α	0	0.162	0	Α	0	0.054	0	Α	0
University Bvd	R	0.053	5.4	Α	2	0.033	5.4	Α	1.1	0.005	4.8	Α	0.2
	Approach	0.132	1.3	Α	2	0.162	0.8	Α	1.1	0.054	0.4	1 A	0.2
North:	L	0.075	5	Α	2.1	0.097	5.2	Α	2.8	0.018	4.8	Α	0.5
Dumas Rd	R	0.075	8.3	Α	2.1	0.097	9.4	Α	2.8	0.018	5.5	Α	0.5
	Approach	0.075	7.9	Α	2.1	0.097	7.7	Α	2.8	0.018	5.4	Α	0.5
West:	L	0.093	4.8	Α	0	0.113	4.7	Α	0	0.028	4.7	Α	0
University Bvd	T	0.093	0	Α	0	0.113	0	Α	0	0.028	0	Α	0
	Approach	0.093	2.1	Α	0	0.113	1.3	Α	0	0.028	0.9	Α	0
All Ve	hicles	0.132	2.2	Α	2.1	0.162	1.7	Α	2.8	0.054	1.0	A	0.5

The results indicate that this intersection will still perform satisfactorily during all the peak hour periods.

8.9 SIDRA Results Summary

8.9.1 Existing Year Performance

In general, the existing year (2024) SIDRA results indicate that all the key intersections assessed are operating at acceptable levels of service during all the peak hour periods. The analysis can be summarised as follows:

- The intersection of Hayman Road and Kent Street appears to operate at satisfactory levels of service, with minimal delays and short queueing.
- The current configuration of Hayman Road and Brodie-Hall Drive (three-legged priority-controlled) is performing adequately with minor delays anticipated in the AM peak period for right-turning traffic from Brodie-Hall Drive.
- The intersection of Hayman Road and Dumas Road appears to operate at satisfactory levels of service, with minimal delays and short queues.
- The intersection of University Boulevard and Kent Street is expected to perform adequately.
 The longest delay is anticipated during the PM peak hour period for the right-turning traffic from University Boulevard into Kent Street.
- The signalised intersection of University Boulevard and Karrak Drive appears to be operating at an acceptable level of service, with minor delays and minimal queueing.
- The intersection of University Boulevard and Dumas Road appears to be operating at a satisfactory level of service, with minimal delays and short queues during all peak hour periods assessed.

8.9.2 Future Year Performance

The SIDRA results of key intersections in the future scenarios (2029 and 2039) indicate that these intersections are operating at acceptable levels of service during all peak hour periods. The analysis can be summarised as follows:

- The intersection of Hayman Road and Kent Street appears is anticipated to still operate at a satisfactory level of service, with minor delays and minimal queueing.
- The proposed Hayman Road, Karrak Drive, and Brodie-Hall Drive intersection is expected to perform at a satisfactory level of service, with minor delays and minimal queueing.
- The intersection of Hayman Road and Dumas Road is also expected to operate at satisfactory levels of service, with minimal delays and short queueing.
- The intersection of University Boulevard and Kent Street is anticipated to perform adequately in the future. The longest delay is expected during the PM peak period for right-turning traffic from University Boulevard into Kent Street.
- The signalised intersection of University Boulevard and Karrak Drive is also anticipated to operate at an acceptable level of service, with minor delays and minimal queueing.
- The intersection of University Boulevard and Dumas Road is also anticipated to operate at a satisfactory level of service, with minimal delays and short queues during all peak hour periods.

9 Conclusions

This Transport Impact Assessment (TIA) outlines the transport aspects of the proposed redevelopment of the State Hockey Centre focusing on the aspects of traffic operations, access, pedestrians, cycling, parking, and public transport. This assessment has been prepared in accordance with the Western Australian Planning Commission (WAPC) Transport Impact Assessment Guidelines for Developments: Volume 4 – Individual Developments (2016).

Based on the assessment of the abovementioned aspects, the following conclusions are made:

- The Site is located within the existing hockey centre adjacent to the Curtin University grounds in Bentley, Town of Victoria Park.
- The crash assessment indicates that a significant number of crashes have occurred along the Site's surrounding road network. However, based on the anticipated day-to-day operations of the development, it is not expected to further affect the overall safety and traffic operations of the existing road network.
- The Site appears to be highly accessible by public transport due to the presence of several
 bus stops and the frequent bus routes running along the surrounding road network. The Site
 is also highly accessible for pedestrians and cyclists due to the extensive presence of highquality shared paths in the surrounding road network.
- The proposed development intends providing only 60-car parking bays exclusively allocated for staff/employees and national team players. This is considered to be adequate as visitors are anticipated to utilise parking facilities outside of the Site or use public transport, cycling, and pedestrian facilities.
- The proposed parking layouts within the development have been assessed and is able to accommodate service vehicles, emergency vehicles and broadcast trucks.
- The Site is anticipated to generate 60 vehicle trips and 22 vehicle trips during the AM and PM peak hour periods respectively. This represents the highest number of vehicle movements anticipated to enter and exit the subject site on any typical day.
- The key intersections considered in this report are generally performing at an acceptable level of service during the base year (2024) scenario.
- The key intersections are anticipated to perform adequately with minimal delays and minor queueing in the future 2029 and 2039 design years.

Overall, the proposed redevelopment of the hockey centre is expected to have minimal impact on the traffic safety, operations, and performance of the surrounding road network.

Appendices

Appendix A

WAPC Checklist

Appendix A WAPC Checklist

Item	Section	Comments/Proposals
Proposed development	Section 4	
Proposed land use	Section 4	
Existing land uses	Section 1	
Context with surrounds	Section 1 / 7	
Vehicular access and parking	Section 4 / 5	
Access arrangements	Section 4	
Public, private, disabled parking set down / pick up	Section 4	
Service vehicles (non-residential)	Section 4	
Access arrangements	Section 4	
On/off-site loading facilities	Section 4	
Service vehicles (residential)	N/A	
Rubbish collection and emergency vehicle access	Section 4	
Hours of operation (non-residential only)	N/A	
Traffic volumes	Section 1 / 8	
Daily or peak traffic volumes	Section 1 / 8	
Type of vehicles (e.g. Cars, trucks)	N/A	
Traffic management on frontage streets	N/A	
Public transport access	Section 2	
Nearest bus/train routes	Section 2	
Nearest bus stops/train stations	Section 2	
Pedestrian/cycle links to bus stops/train station	Section 2 / 3	
Pedestrian access/facilities	Section 3	
Existing pedestrian facilities within the development (if any)	Section 3 / 6	
Existing pedestrian facilities on surrounding roads	Section 1 / 3	
Proposals to improve pedestrian access	Section 6	
Cycle access/facilities	Section 3	
Existing cycle facilities within the development (if any)	Section 1 / 3	
Existing cycle facilities on surrounding roads	Section 3	
Safety issues	Section 1	
Identify issues	N/A	
Remedial measures	N/A	

Project: 300304837 A-1

Appendix B

Site Plan

PROPOSED BUILDINGS

ANCILLARY BUILDINGS / STRUCTURES

TOWN OF VICTORIA PARK Received: 07/01/2025

TIE-IN ROAD WORKS TO CONNECT TO EXISTING FEATURES

EXISTING SITE FEATURES TO BE RETAINED

PROJECT LEASE BOUNDARY

GENERAL NOTES: THE LEASE AREA BOUNDARY IS NOTIONAL AND NEEDS TO BE CONFIRMED BY A LICENCED SURVEYOR

APPROVAL, IDENTIFICATION AND PROTECTION OF SIGNIFICANT NATIVE VEGETATION ALL EXISTING TREES SHOWN ON SITE PLAN TO BE

NO NEW WORKS TO TAKE PLACE WITHIN WATER

CORPORATION DRAINAGE BASIN WITHOUT ARBORIST

PROTECTED IN ACCORDANCE WITH ARBORIST RECOMENDATIONS FOR TPZ / SRZ SET-BACKS

ALL WORKS OUTSIDE OF LEASE BOUNDARY WILL REQUIRE THE APPROVAL OF THE LANDLORD

EXISTING CAMPUS OPERATIONAL AREAS SUCH AS CARPARKS AND ROADWAYS TO REMAIN IN FULL OPERATION AND PUBLICLY ACCESSIBLE DURING THE

FENCES AND GATES SHOWN INDICATIVELY ON ARCHITECTURAL SITE PLAN. FOR DETAILED ALIGNMENT, HEIGHT AND TYPE OF FENCING REFER TO LANDSCAPE ARCHITECTS DRAWINGS

REFER TO LANDSCAPE SITE PLAN FOR DETAILED HARD AND SOFTSCAPE FINISHES AND MATERIALS

HAYMAN ROAD INTERSECTION WORKS SUBJECT TO AGREEMENT WITH THE TOWN OF VICTORIA PARK

ALL MAKE GOOD WORKS TO AREA SOUTH OF THE PROJECT SITE SUBJECT TO AGREEMENT WITH THE LANDLORD

NOT FOR CONSTRUCTION

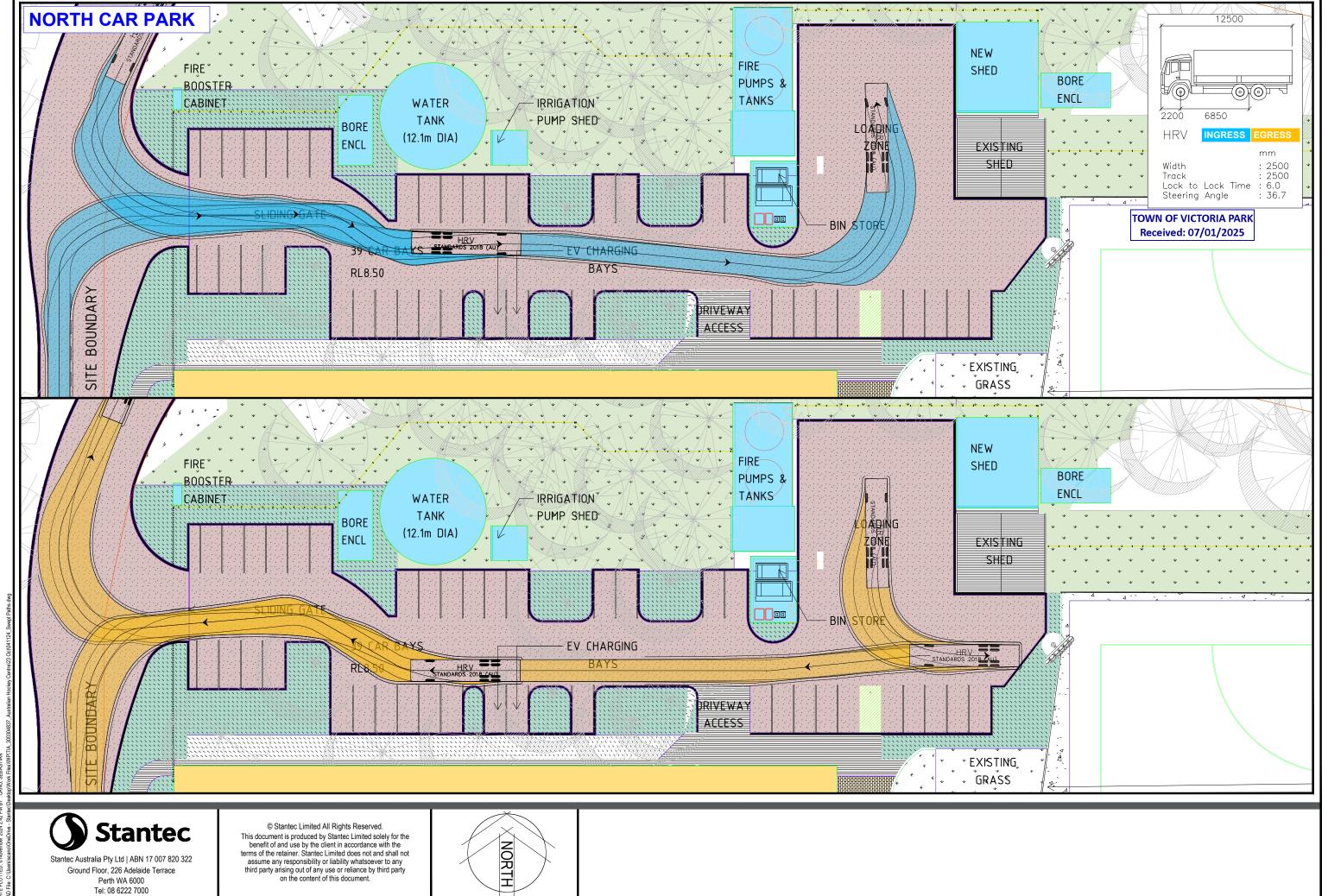
T	01.11.2024	ISSUE FOR DD COORDINATION	S
S	28.10.2024	ISSUE FOR DD COORDINATION	S
R	25.10.2024	ISSUE FOR DD COORDINATION	S
Q	04.10.2024	ISSUE FOR COORDINATION	A
Р	27.09.2024	ISSUE FOR COORDINATION	A
0	20.09.2024	ISSUE FOR 50% DD	S
N	18.09.2024	ISSUED FOR COORDINATION	Α
М	30.08.2024	ISSUE FOR DD COORDINATION	S
L	16.08.2024	ISSUE FOR DD COORDINATION	S
K	12.07.2024	SCHEMATIC DESIGN	S
REV	DATE	DESCRIPTION	В

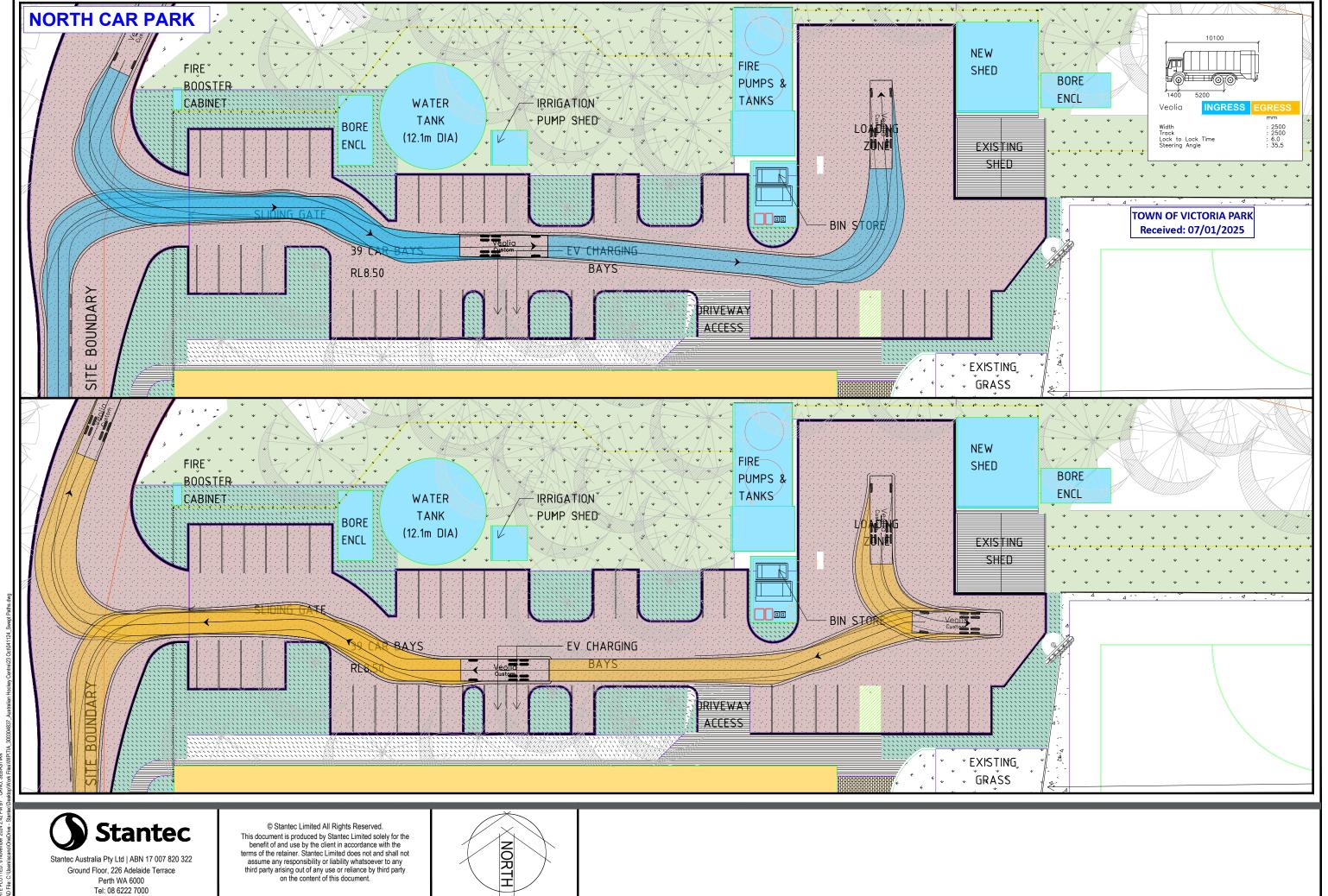
Perth Studio Whadjuk Nation
Level 3, 242 Murray Street,
Perth, WA 6000
+618 9322 6033
perth@huntarchitects.com.au

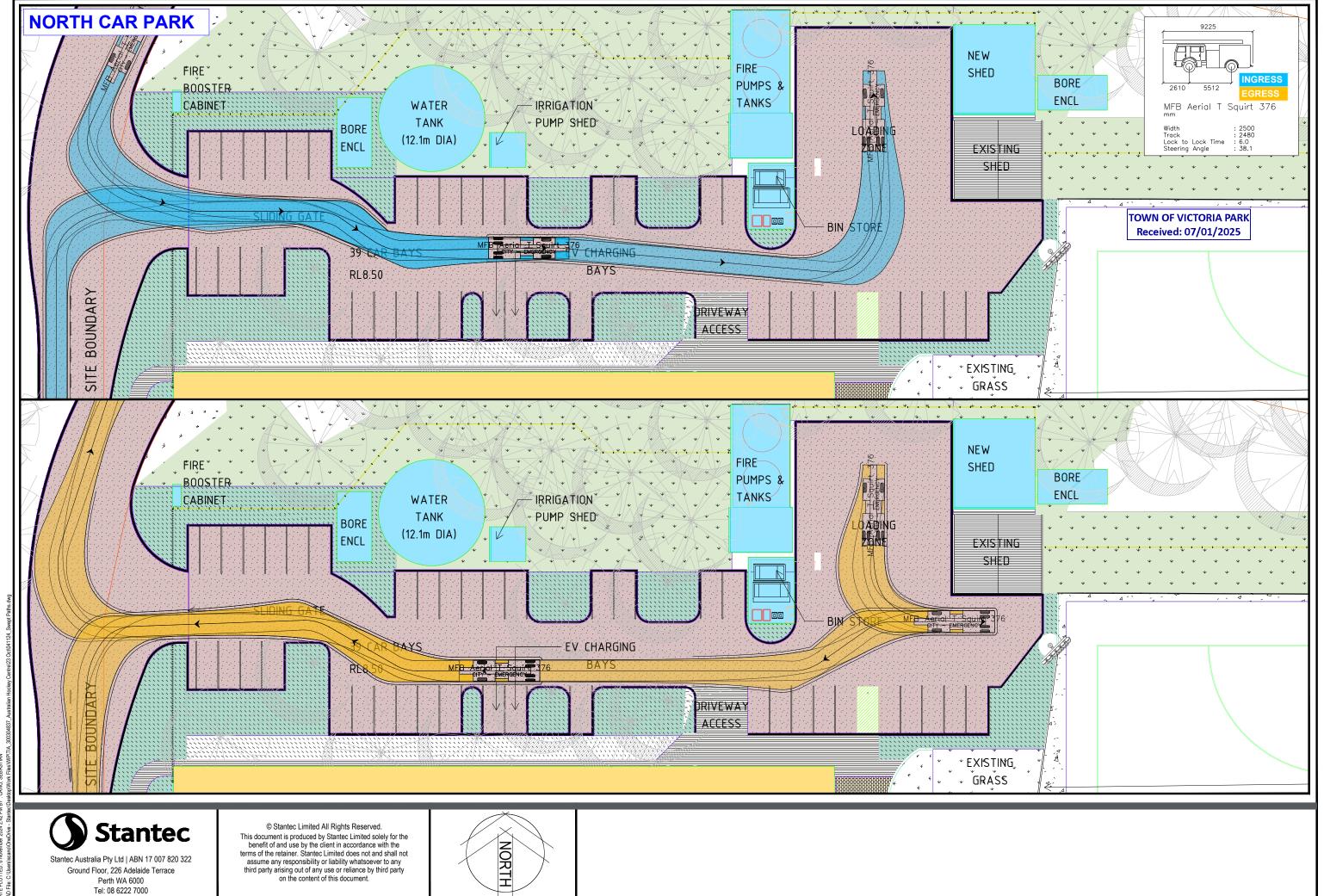
Government of **Western Australia**Department of **Finance Major Projects**

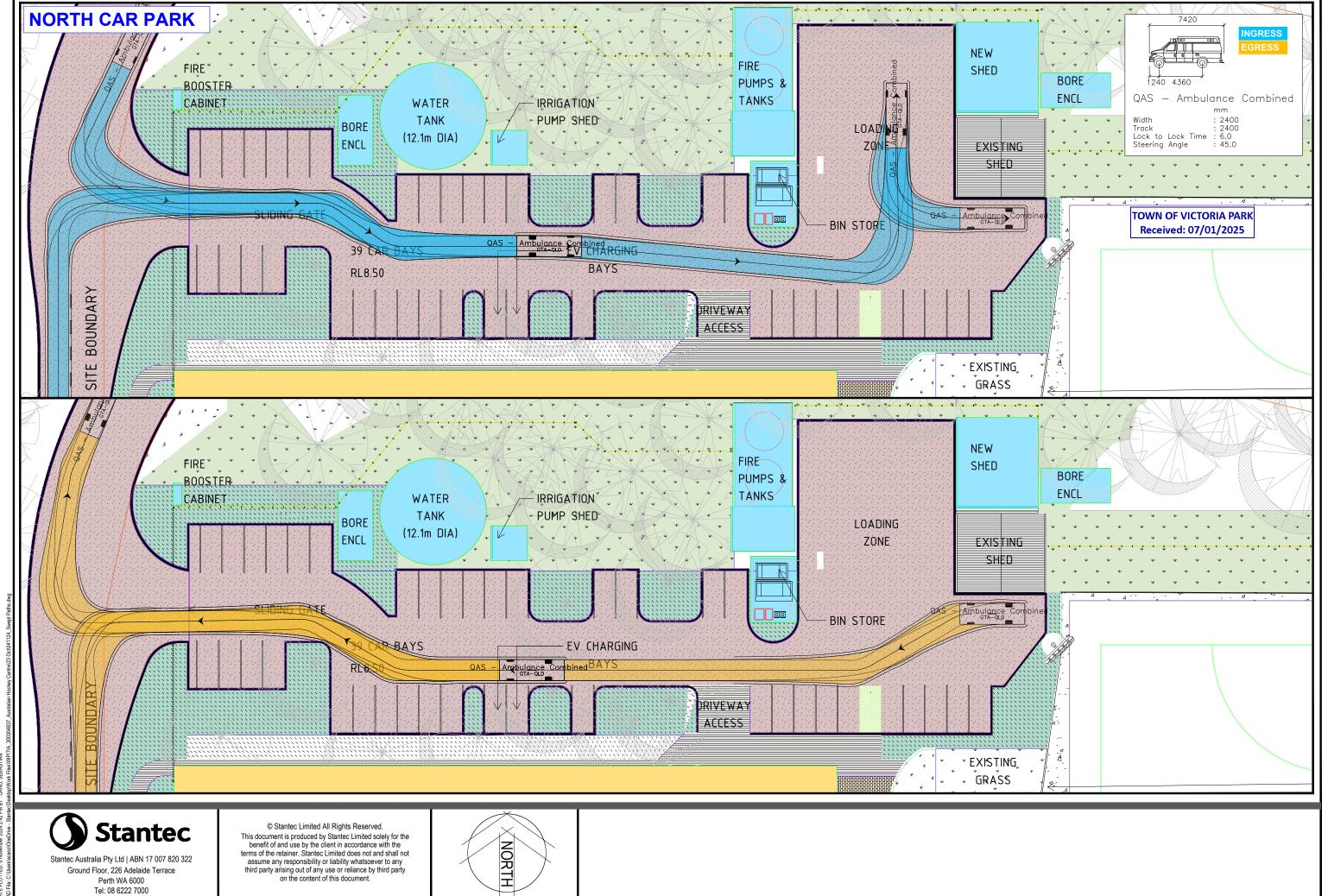
ARCHITECTURAL

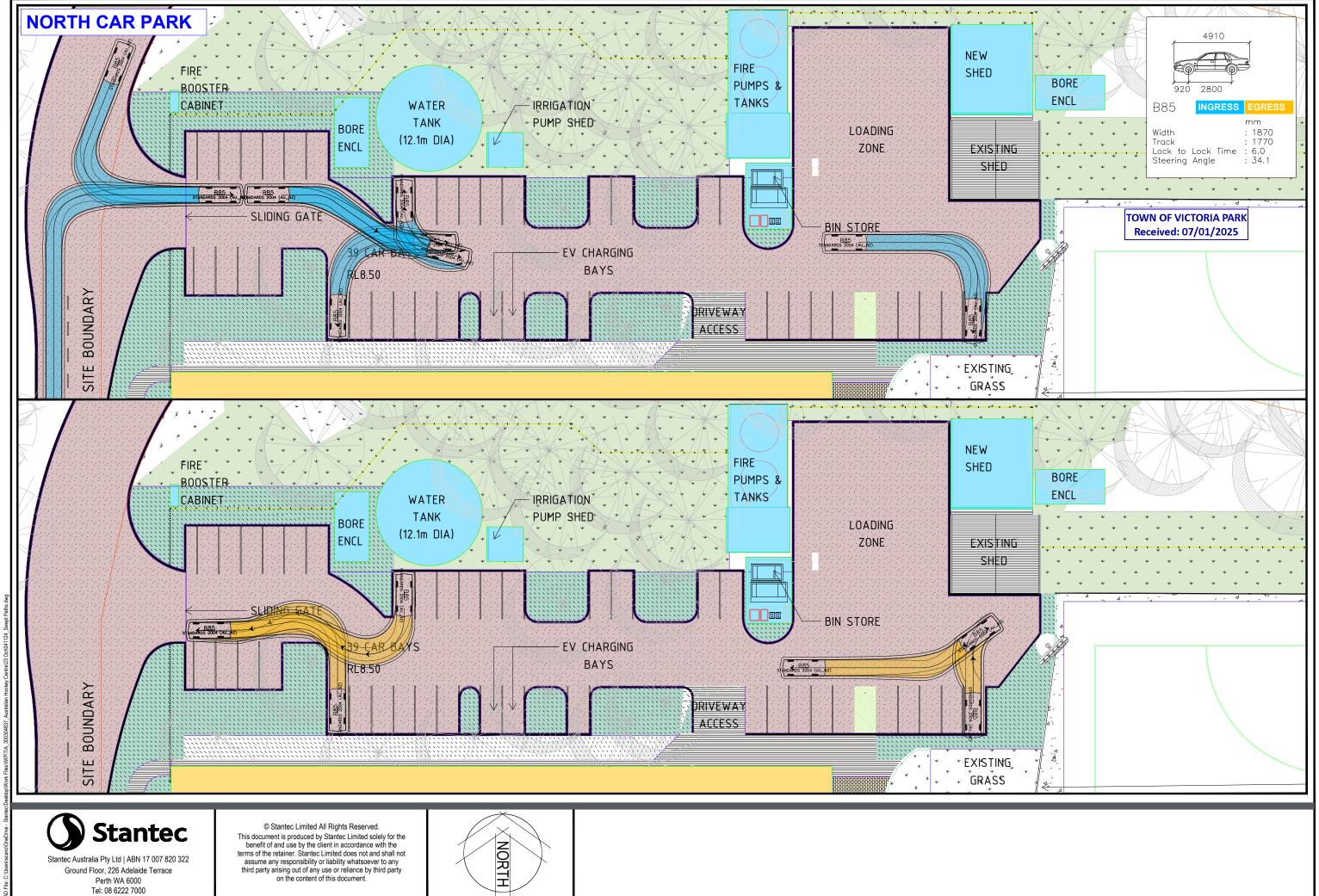
DEPARTMENT OF FINANCE AUSTRALIAN HOCKEY CENTRE KENT ST, BENTLEY WA 6102 OVERALL SITE PLAN SITE PLAN

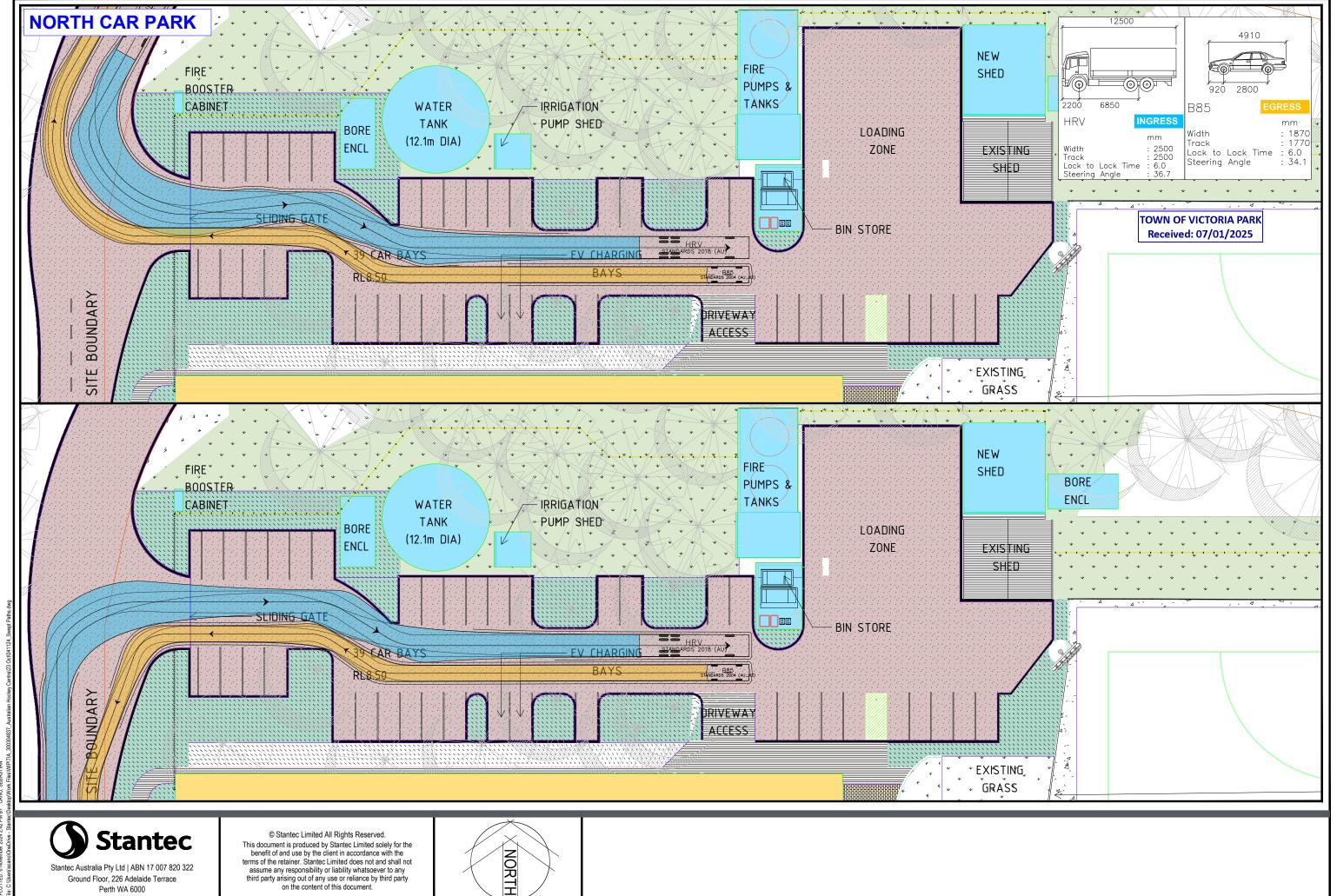

DRAWN	SH	DESIGNED	Designer		REDUCTION
CHECKED	SS	PRINCIPAL			0
APPROVED	SS				
SCALE As indicate	ed @ A0	DATE	01.11.	2024	DRAWING No.
PROJECT No	2310	DF FILE No)		כטוו–טט

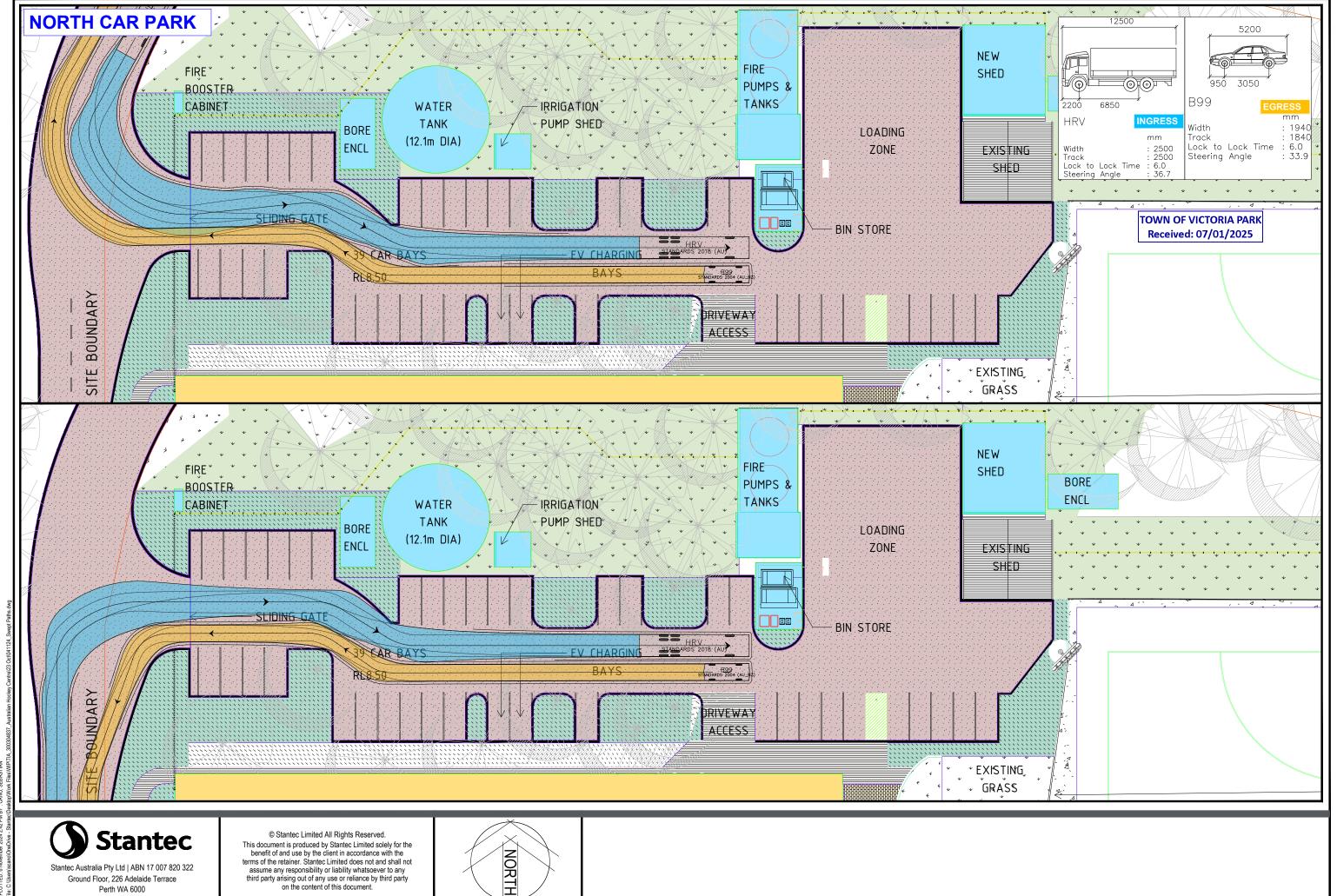

XXXDD-1103

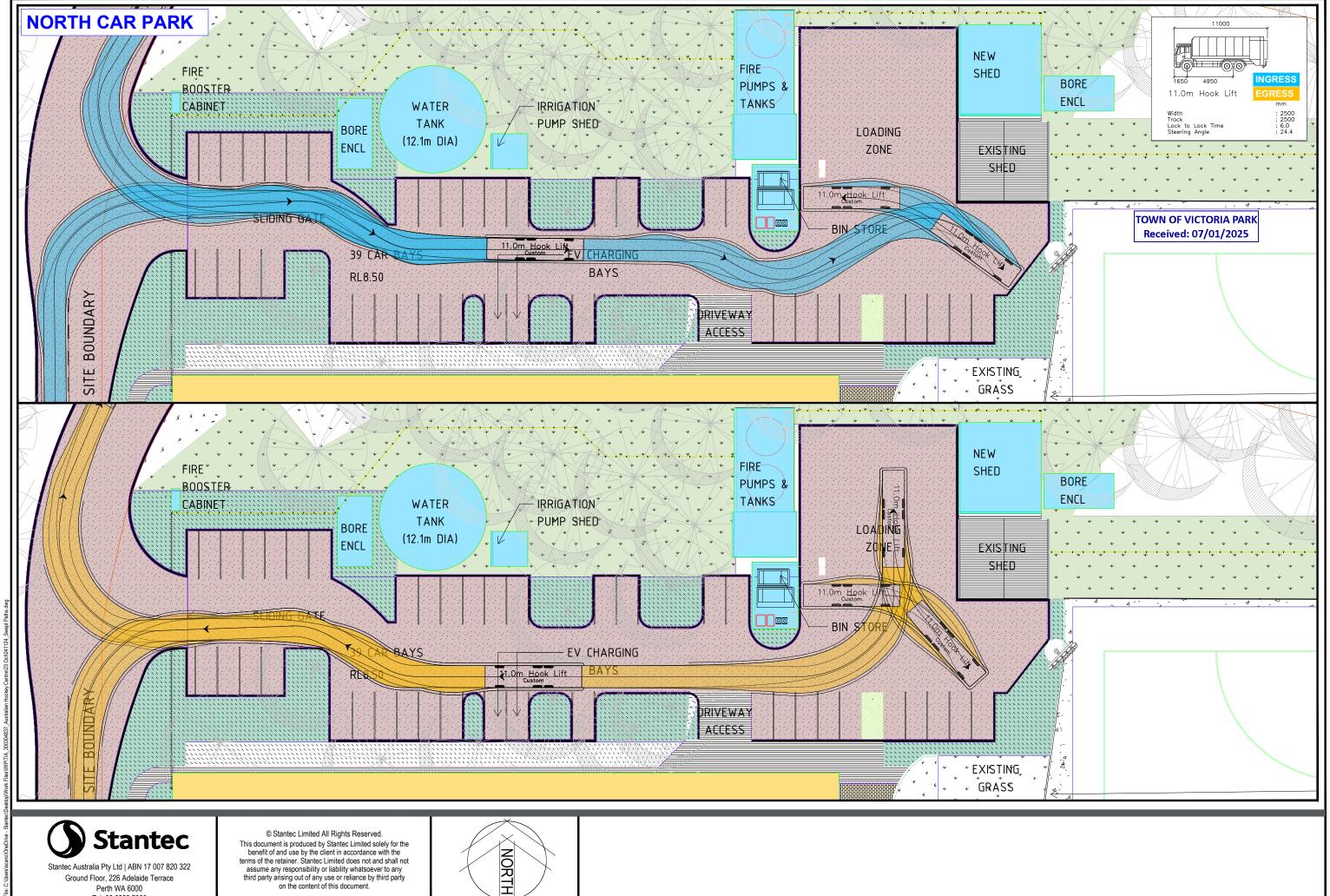

THIS IS A CADD DRAWING DO NOT AMEND MANUALLY

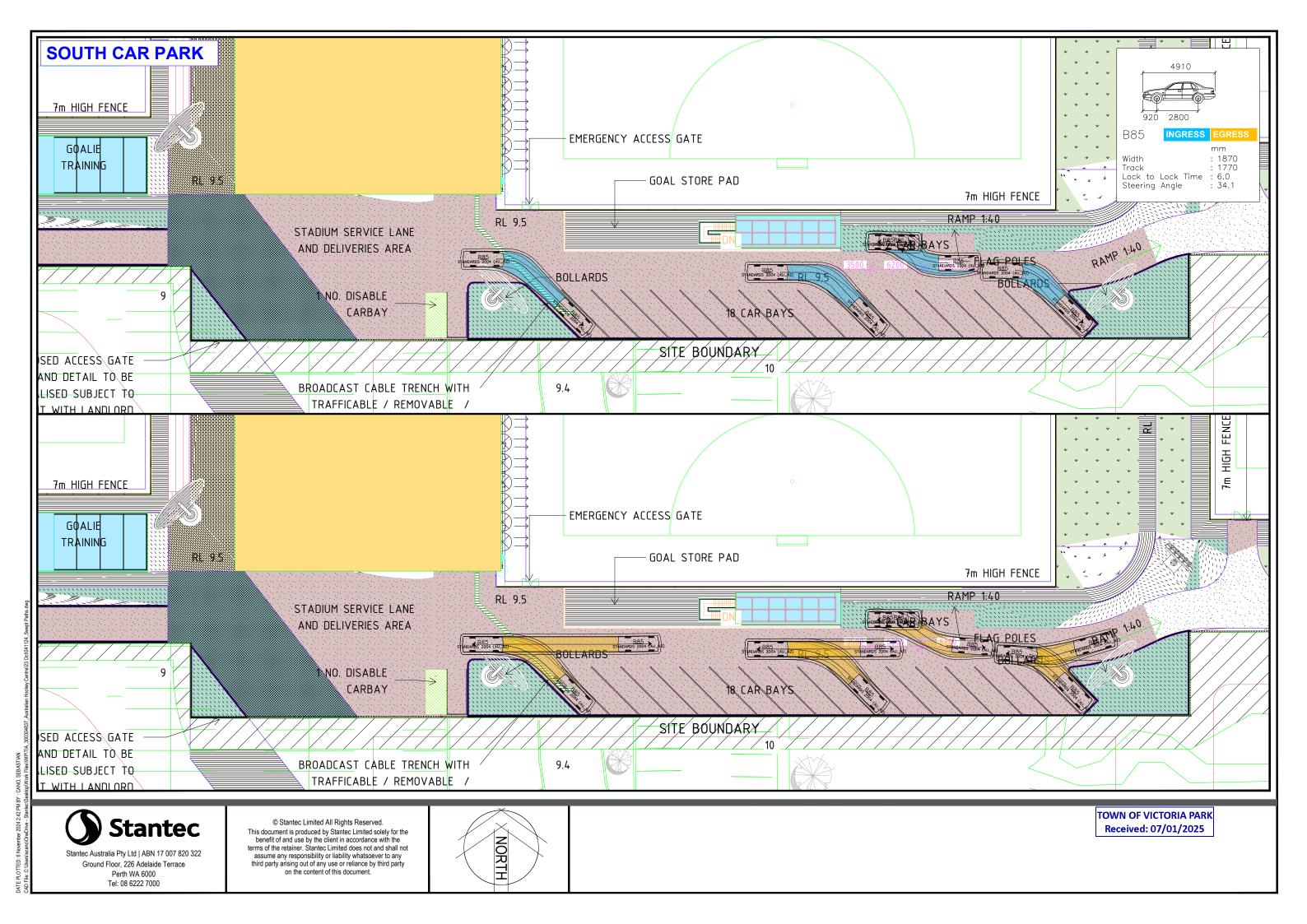

Appendix C

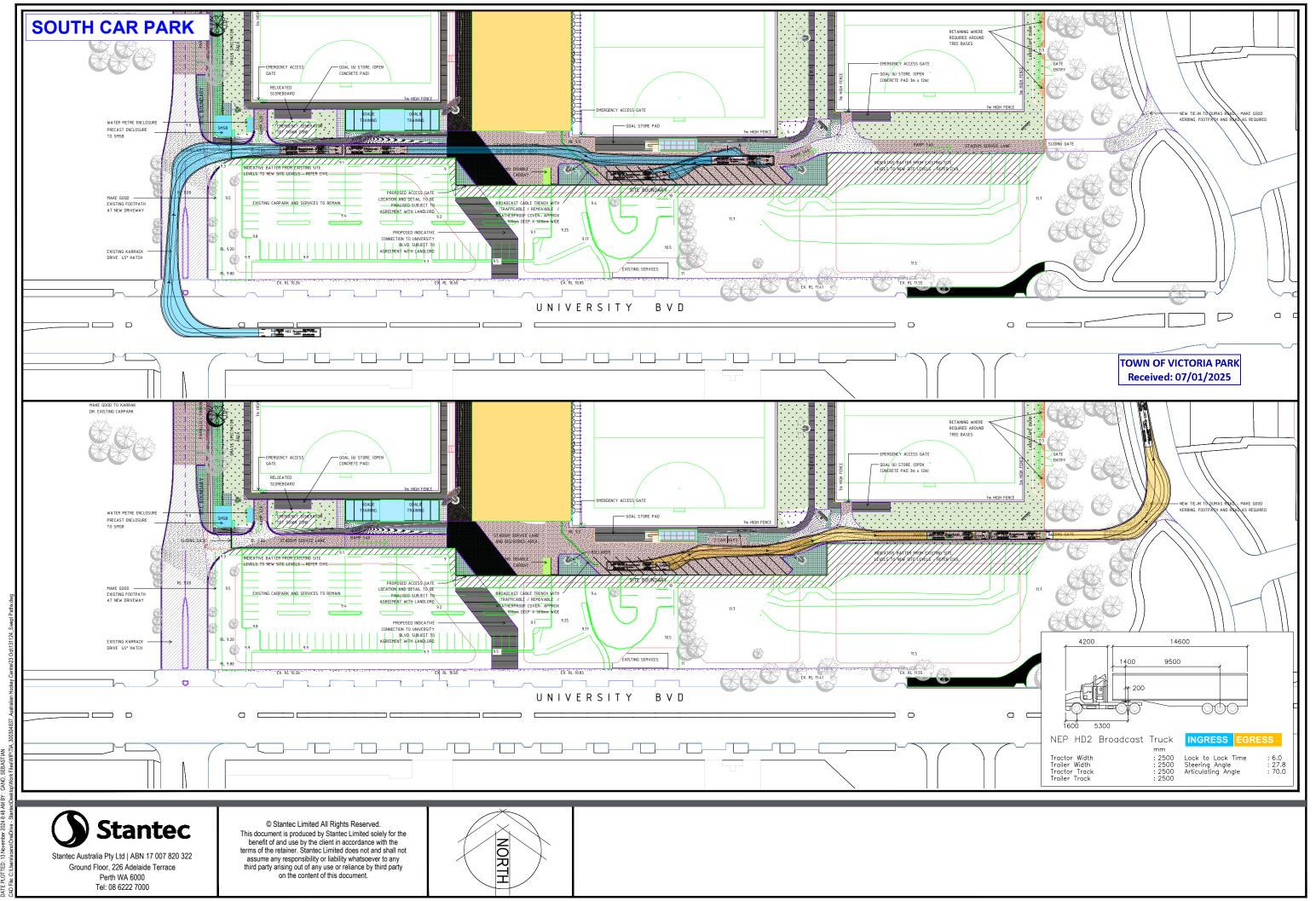

Swept Path Diagrams

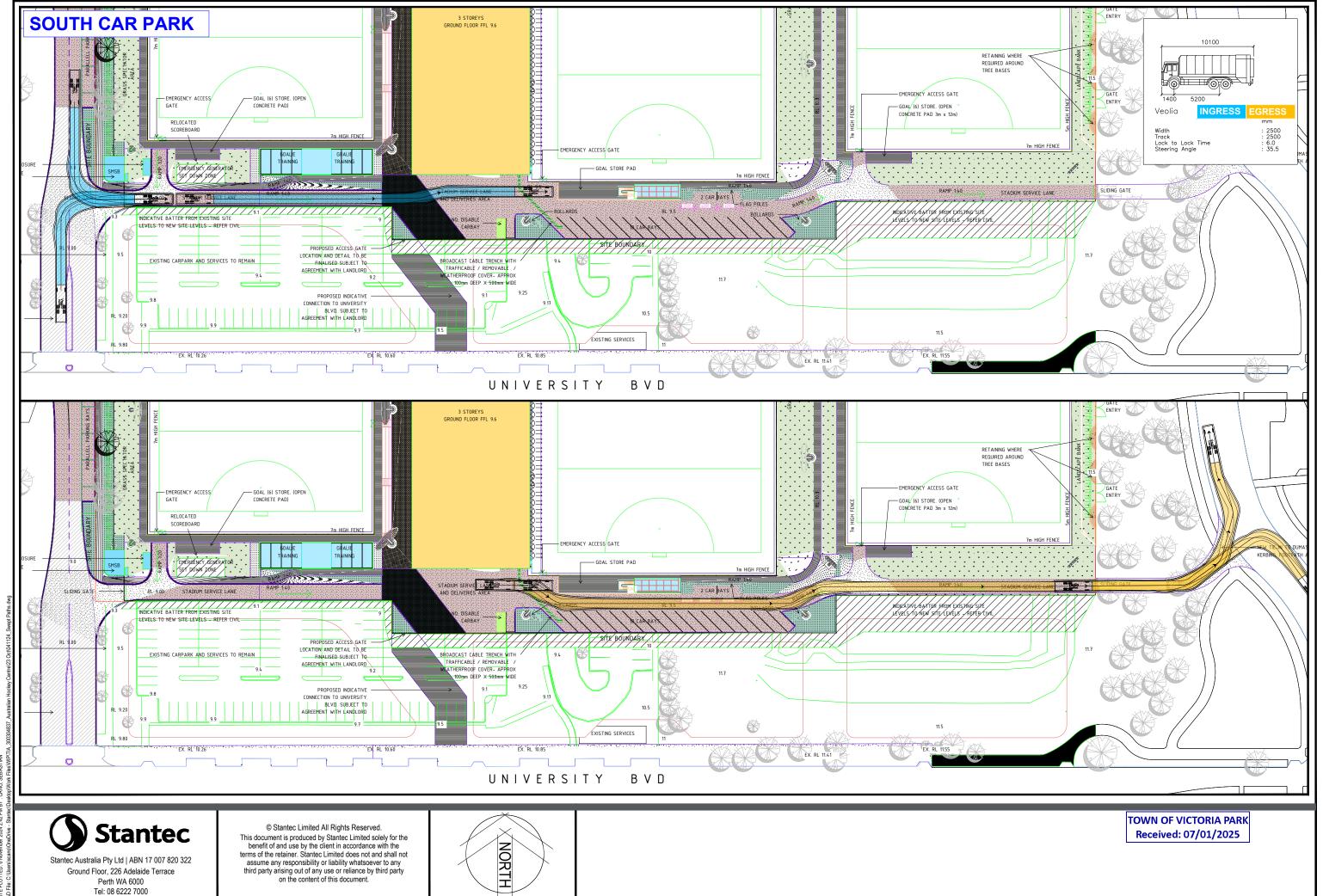


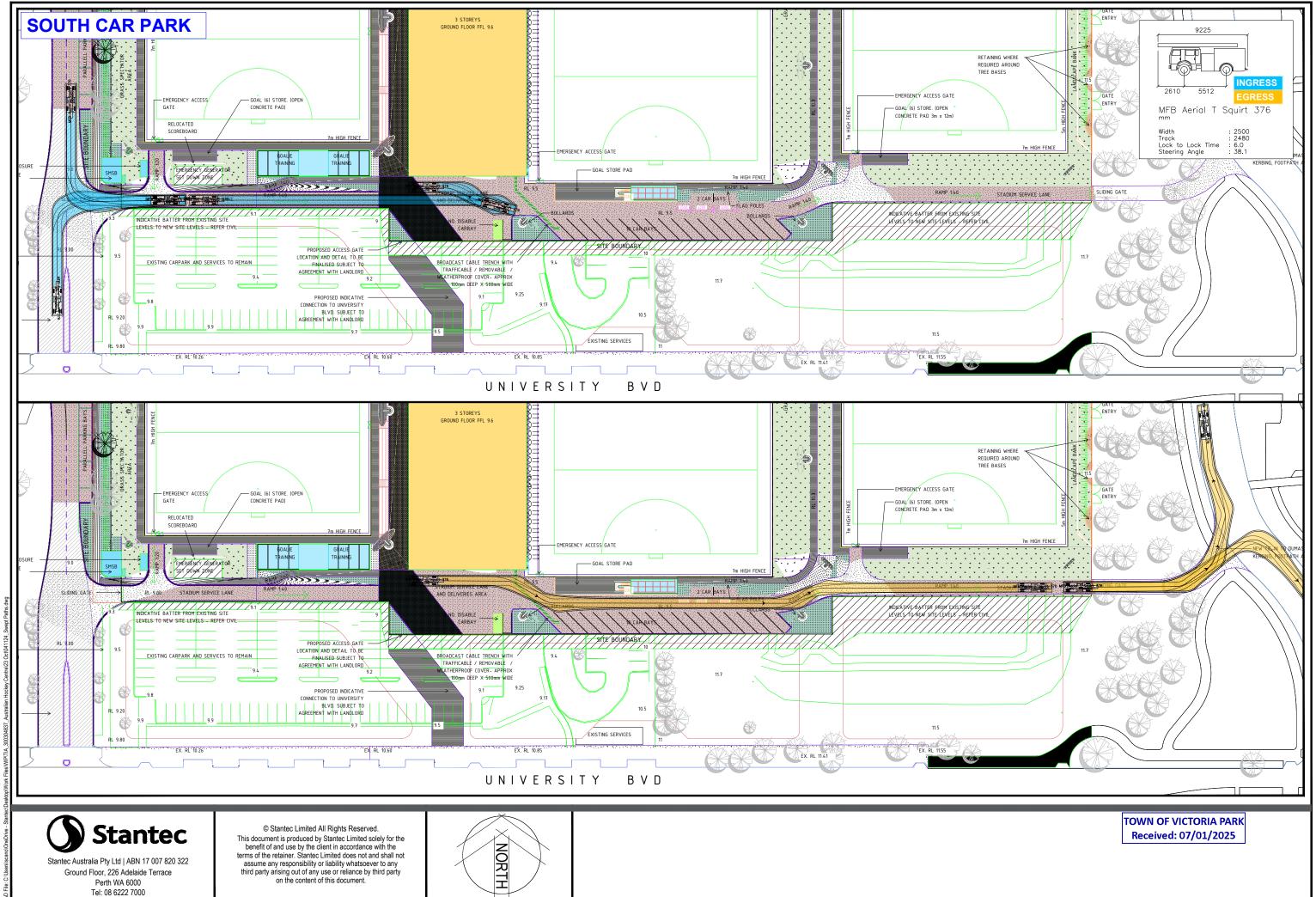


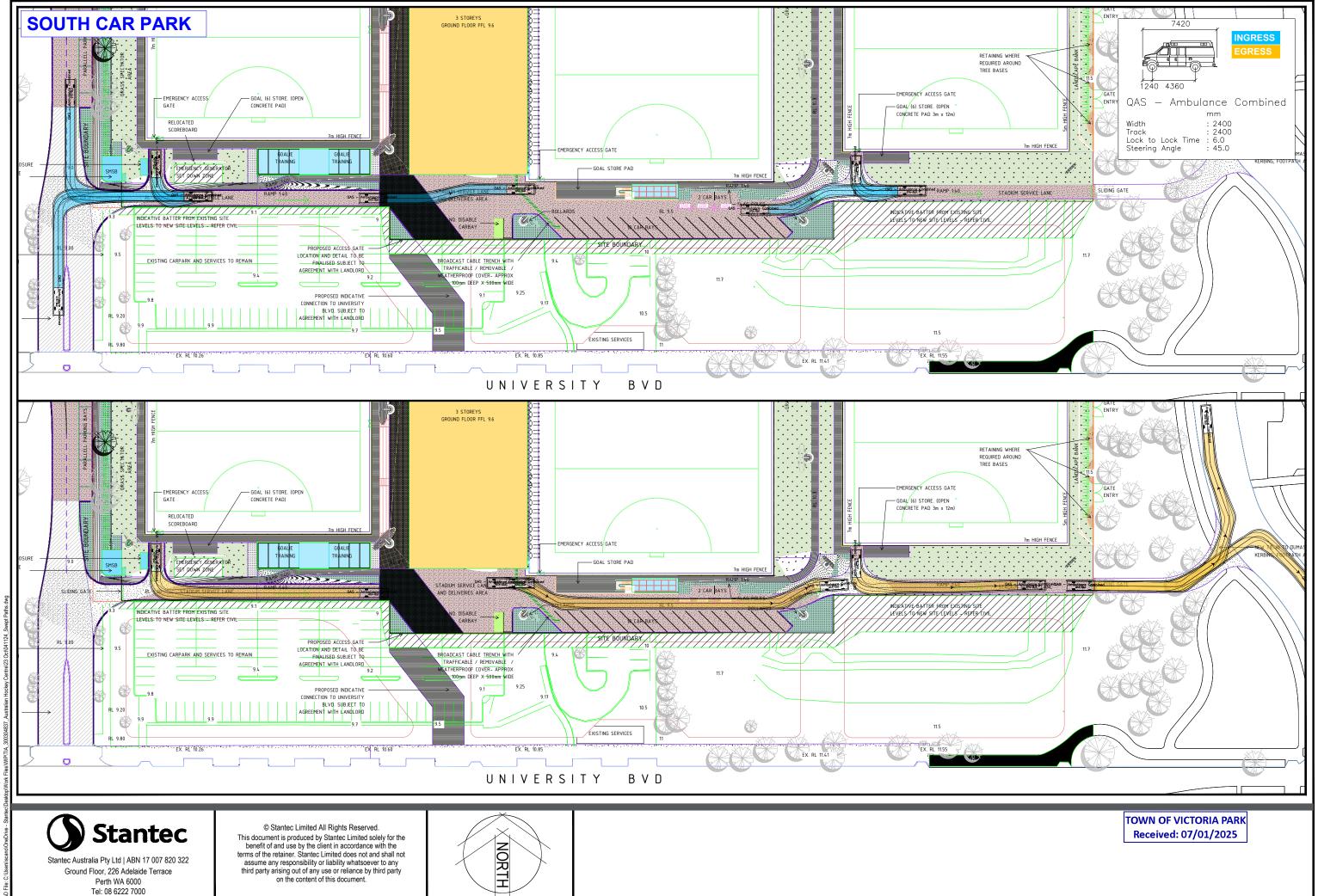


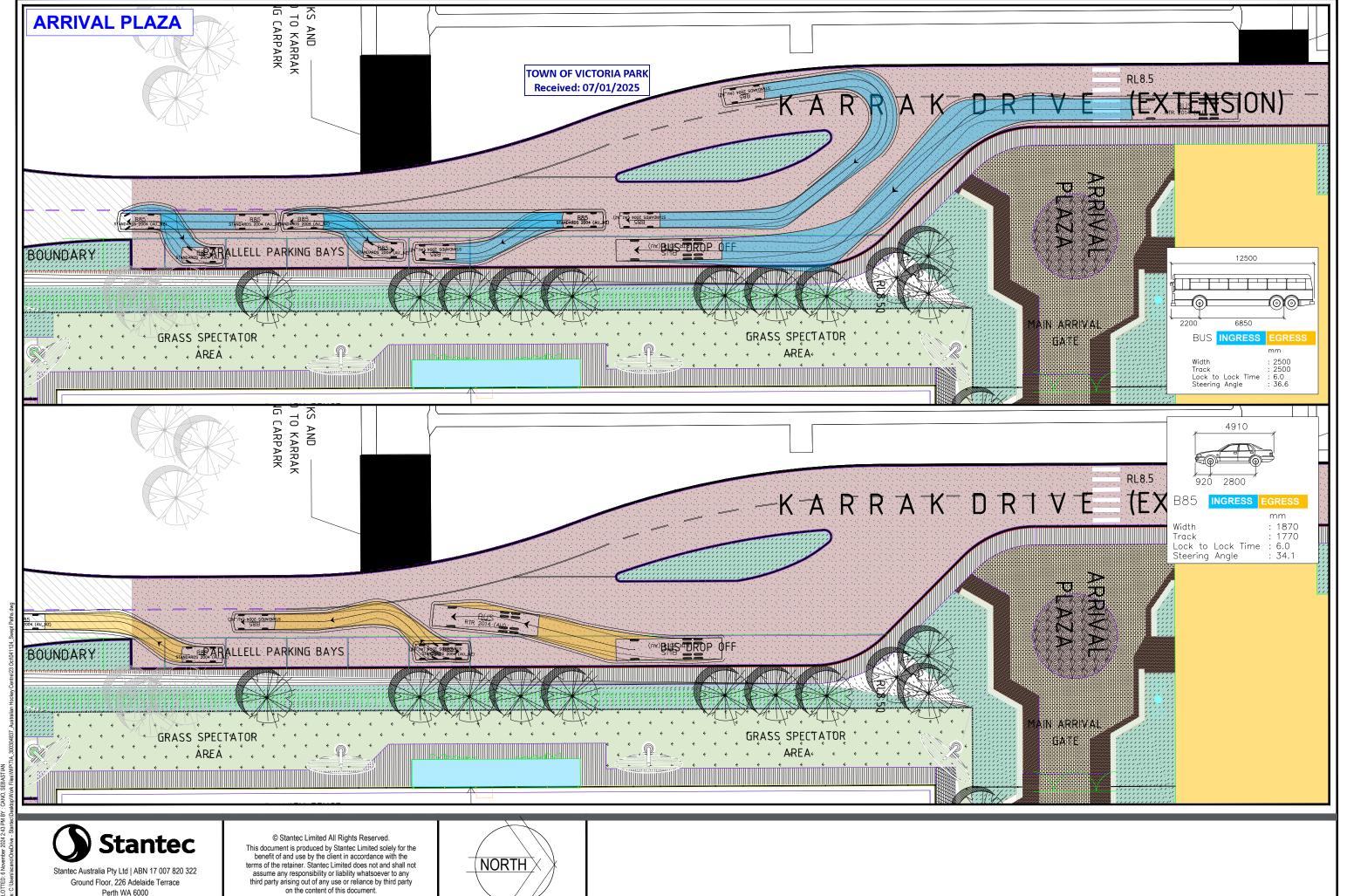

Tel: 08 6222 7000

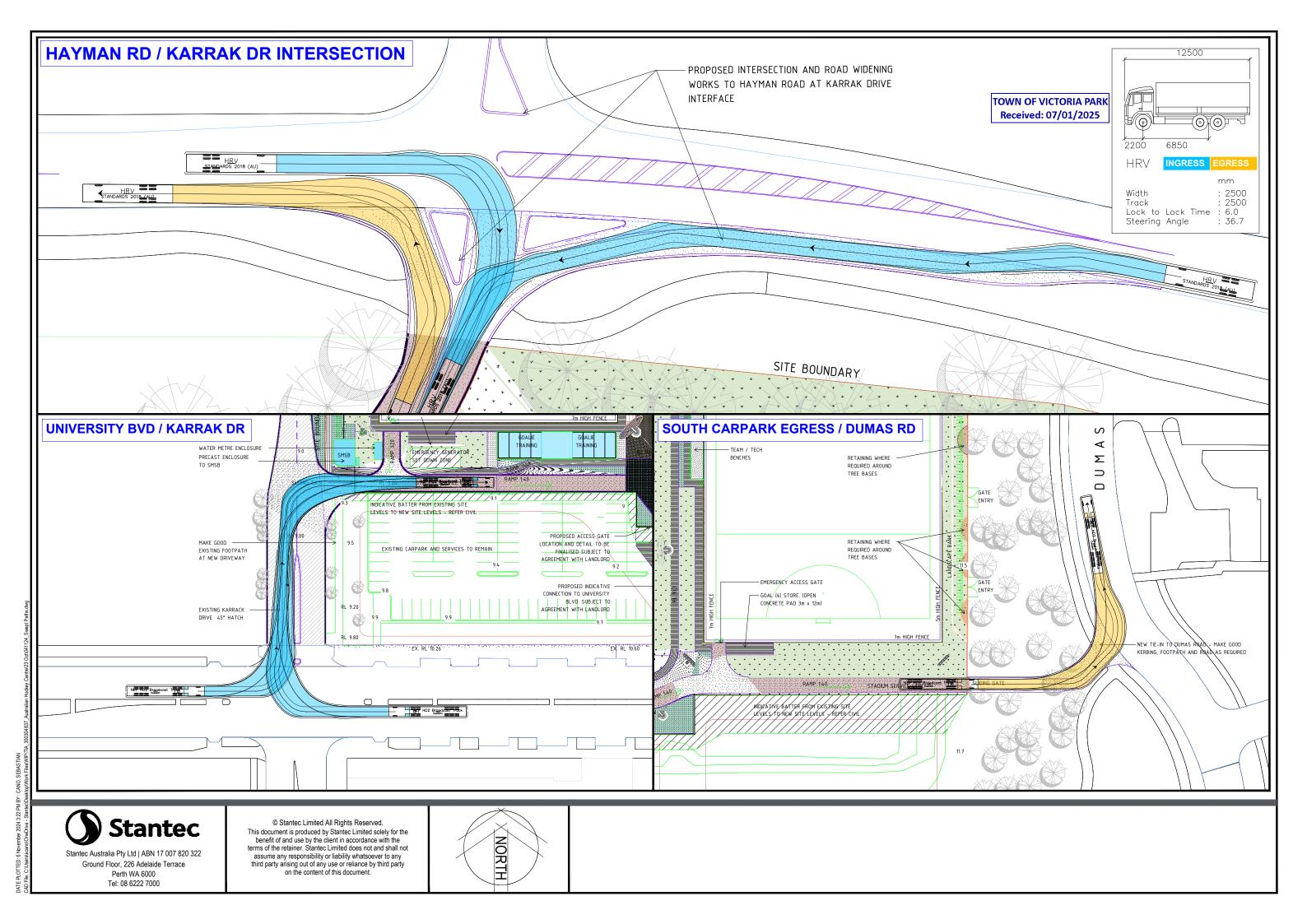



Tel: 08 6222 7000

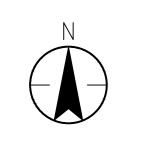

Stantec Australia Pty Ltd | ABN 17 007 820 322 Ground Floor, 226 Adelaide Terrace
Perth WA 6000
Tel: 08 6222 7000

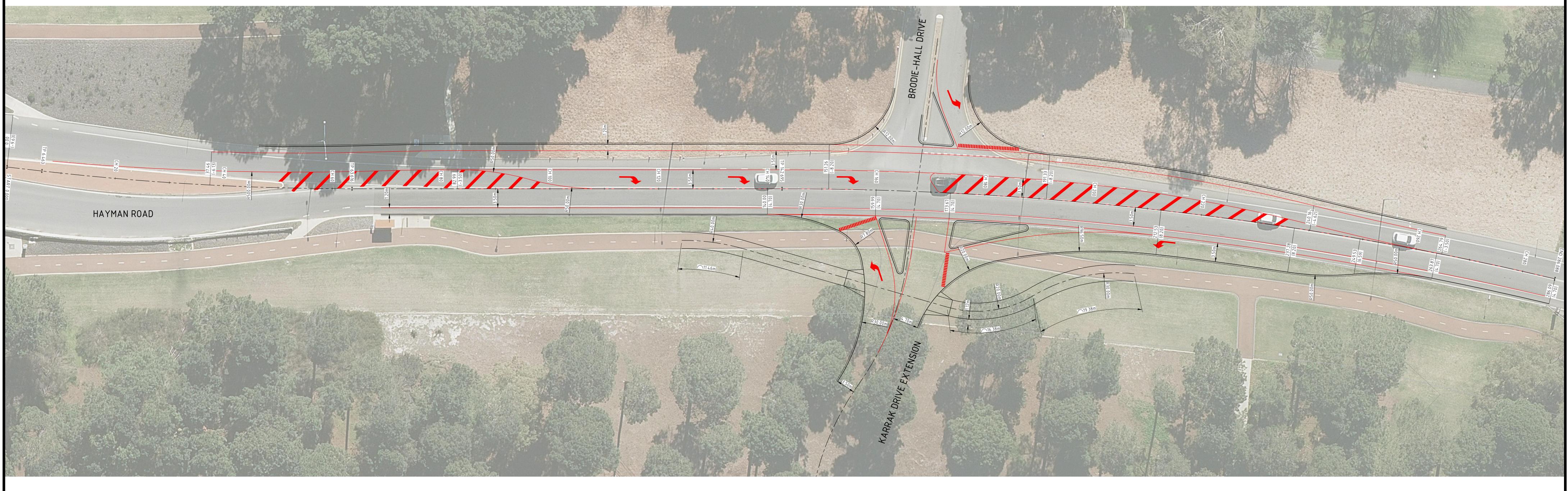



DATE PLOTTED: 6 November 2024 2:42 PM BY: CANO, SEBASTIAN


DATE PLOTTED: 6 November 2024 2:42 PM BY: CANO, SEBASTIAN

DATE PLOTTED: 6 November 2024 2:43 PM BY: CANO, SEBASTIAN




Perth WA 6000 Tel: 08 6222 7000

Appendix D

Intersection Design Plan

DESIGN CRITERIA

HAYMAN ROAD POSTED 60kph = <u>DESIGN 70kph</u>

AUSTROADS - GUIDE TO ROAD DESIGN PART 4A - UNSIGNALISED AND SIGNALISED INTERSECTIONS

TABLE 5.2 - LENGTH OF DECELERATION LANE =75m

3.5m LANE WIDTH

1.2m CYCLE LANE WIDTH
12.5m SINGLE UNIT TRUCK USED FOR TURNING MOVEMENTS

50m RADIUS REVERSE CURVES FOR LANE TRANSITIONS (MRWA SUPPLEMENT TO AUSTROADS GTRD PART 4A - PART 5.2.1)

LANE ARRANGEMENT FROM MRWA DRAWING 200131-0084:
GUIDELINE DRAWING

MAIN ROADS CHANNELISED RIGHT TURN TYPE "CHR"
MAIN ROADS CHANNELISED LEFT TURN TYPE "CHL"
INTERSECTIONS AT GRADE SHEET 6 OF 10

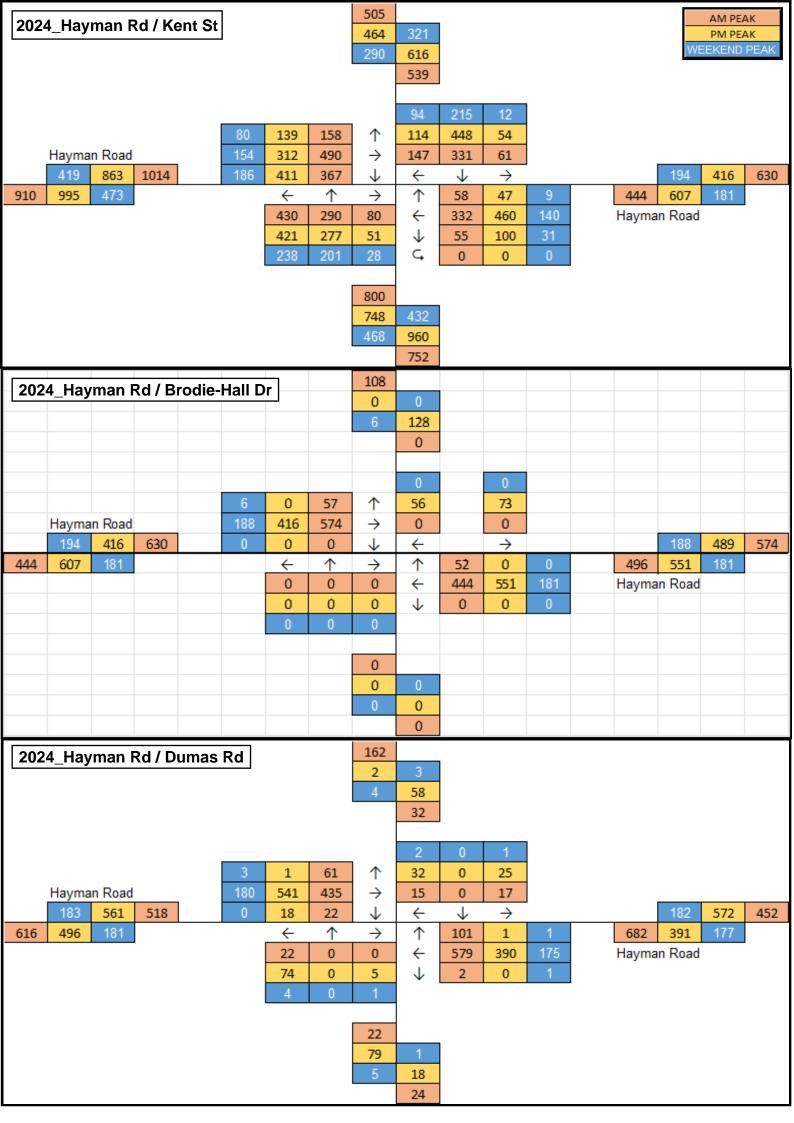
SPLITTER ISLANDS SHOWN ARE INDICATIVE, PEDESTRIAN MOVEMENT MAY DICTATE FURTHER REQUIREMENTS FOR INCREASED SPLITTER ISLAND SIZES OR MEDIAN REFUGE RATHER THAN PAVEMENT MARKING.

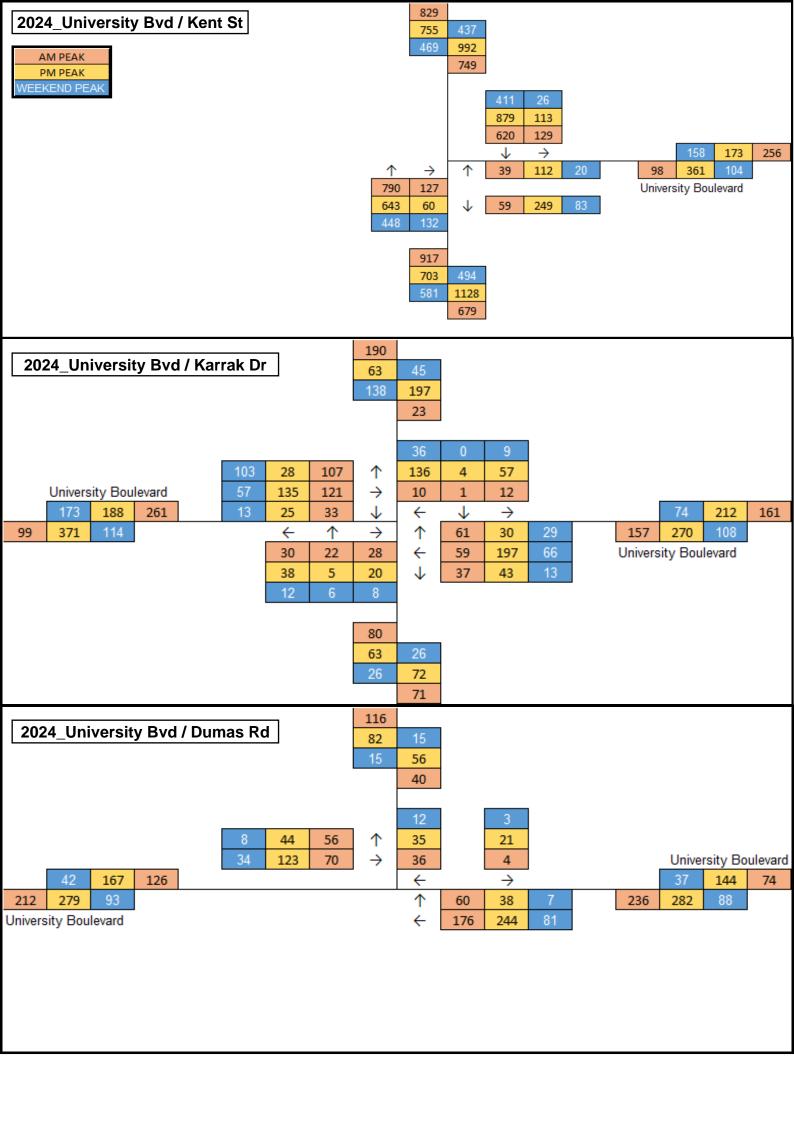
3m PATH DIVERSION SHOWN IS:
TO AT LEAST 1m FROM THE ROAD RESERVE BOUNDARY
DIRECT CROSSING ACROSS ROAD
(MRWA SUPPLEMENT TO AUSTROADS GTRD PART 6A - PART 5.3)
MINIMUM RADIUS LENGTH 11m (ASSUMED 20KPH SPEED APPROACHING CROSSING) RADII SELECTED TO ACHIEVE MIN LENGTH

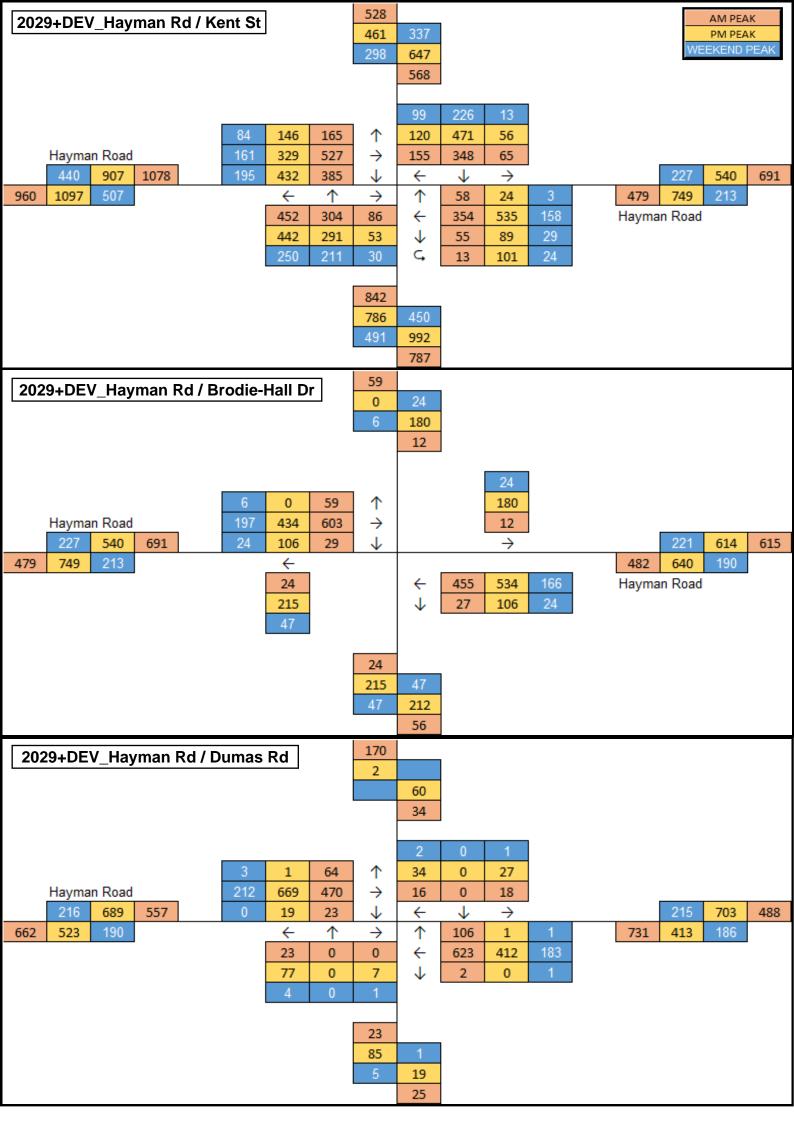
HAYMAN ROAD INTERSERSECTION PLAN

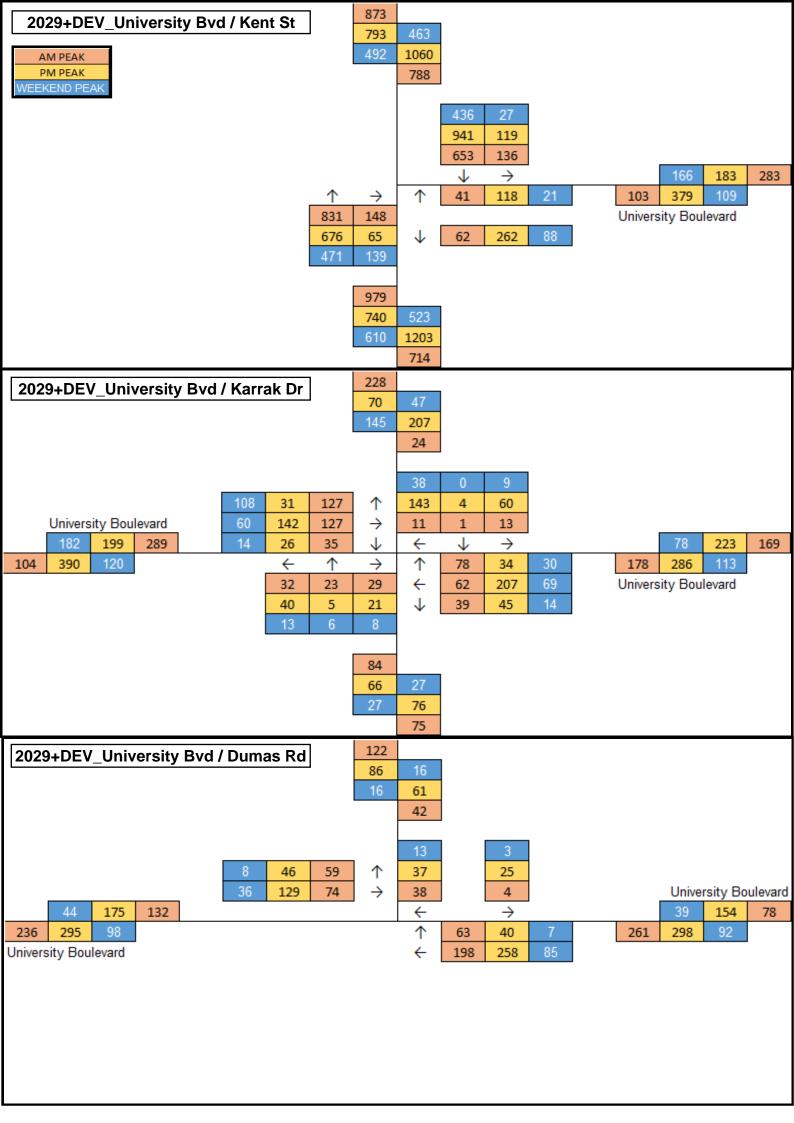
1:250

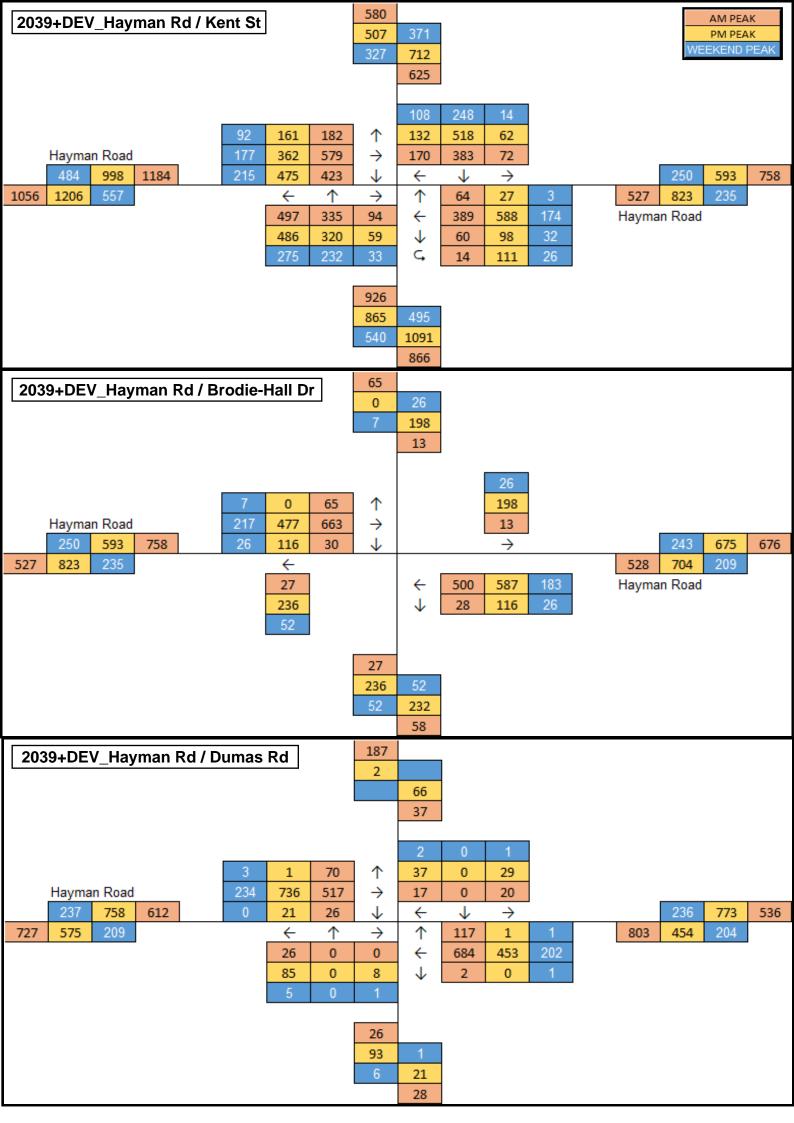
DOCUMENTATION BY: STANTEC AUSTRALIA PTY LTD. 226 ADELAIDE TERRACE PERTH, WA, AUSTRALIA 6000

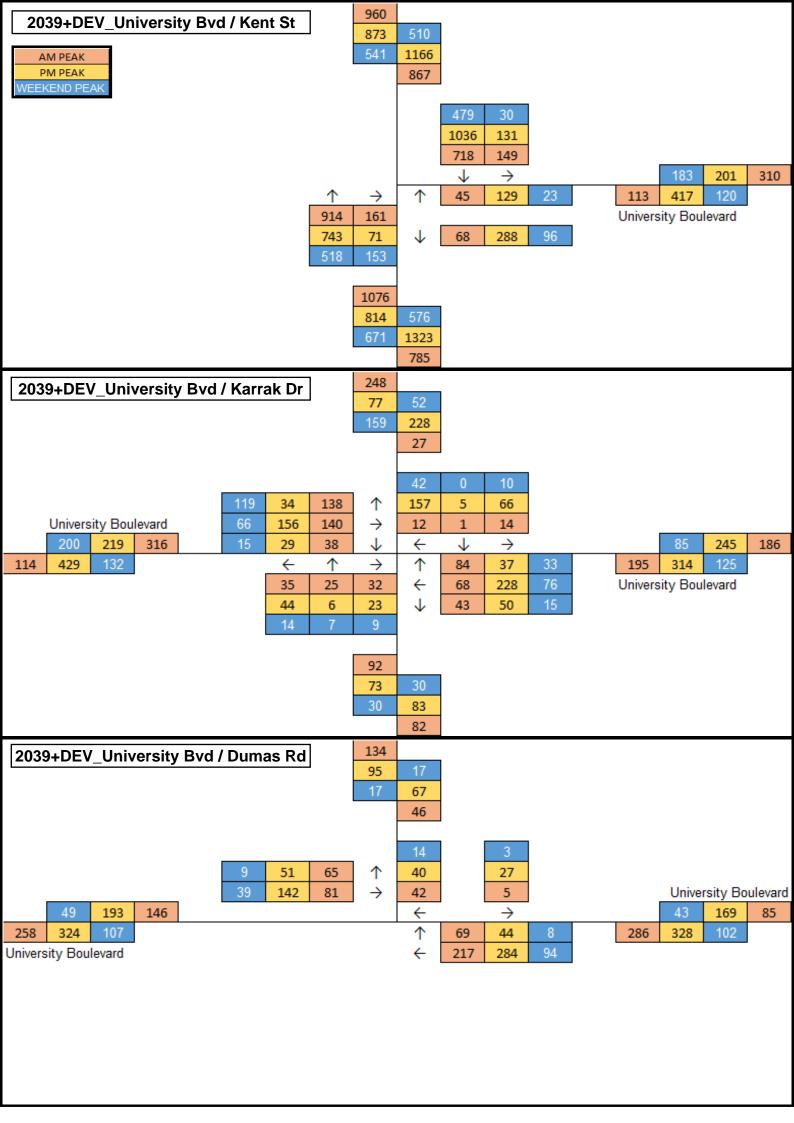

AUSTRALIAN HOCKEY CENTRE HAYMAN ROAD INTERSECTION PLAN


DRAWN AS	DESIGNED TS		REDUCTION
CHECKED	PRINCIPAL		0 5
APPROVED ST		ST	
SCALE	DATE		DRAWING No.
1:250	20.09.2024		C 4 0
DF PROJ No.	DF FILE No.		1 18
157.29	AHCC18A5		


THIS IS A CADD DRAWING NAME TIME DATE
DO NOT AMEND MANUALLY


Appendix E


Design Traffic Volumes

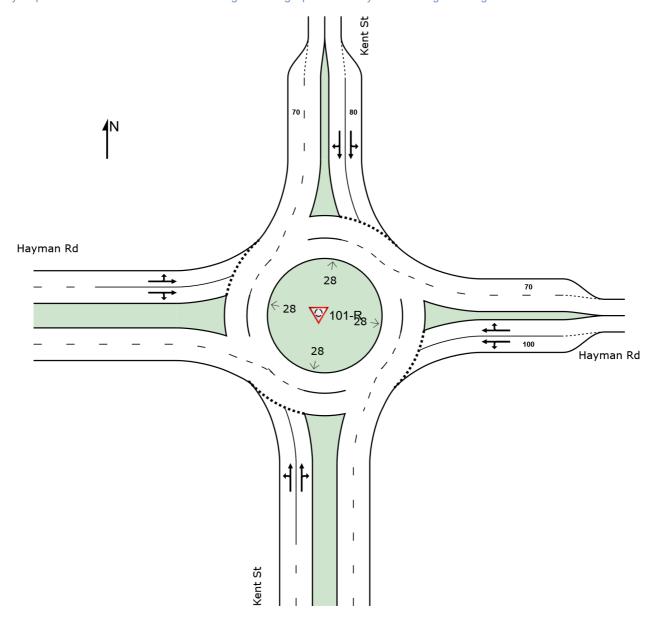


Appendix F

SIDRA Results

SITE LAYOUT

₩ Site: 101-R [Hayman Rd / Kent St (Site Folder: 2024_AM)]


NA

Site Category: (None)

Roundabout

TOWN OF VICTORIA PARK Received: 07/01/2025

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 11:02:13 AM
Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

MOVEMENT SUMMARY

Site: 101-R [Hayman Rd / Kent St (Site Folder: 2024_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK Received: 07/01/2025

NA

Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class		OWS	FI Total]	OWS	Satn	Delay	Service	Qu [Veh.	eue Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m m		rtate	Сусісз	km/h
South	ı: Kent	St													
1	L2	All MCs	453	4.3	453	4.3	0.430	6.8	LOSA	2.4	18.3	0.62	0.68	0.63	55.9
2	T1	All MCs	305	4.4	305	4.4	0.429	7.5	LOSA	2.3	17.9	0.63	0.70	0.66	51.6
3	R2	All MCs	84	4.4	84	4.4	0.429	13.1	LOS B	2.3	17.9	0.63	0.70	0.66	48.0
Appro	oach		842	4.3	842	4.3	0.430	7.7	LOSA	2.4	18.3	0.62	0.69	0.64	53.6
East:	Haym	an Rd													
4	L2	All MCs	58	3.9	58	3.9	0.290	6.5	LOSA	1.5	11.6	0.68	0.65	0.68	49.3
5	T1	All MCs	349	3.9	349	3.9	0.290	6.7	LOSA	1.5	11.6	0.68	0.68	0.68	52.1
6	R2	All MCs	61	3.9	61	3.9	0.290	12.6	LOS B	1.4	10.8	0.69	0.73	0.69	46.9
Appro	oach		468	3.9	468	3.9	0.290	7.4	LOSA	1.5	11.6	0.68	0.68	0.68	51.1
North	: Kent	St													
7	L2	All MCs	64	2.9	64	2.9	0.411	9.1	LOSA	2.7	20.5	0.82	0.78	0.87	48.6
8	T1	All MCs	348	2.9	348	2.9	0.411	8.3	LOSA	2.7	20.5	0.82	0.80	0.88	51.4
9	R2	All MCs	155	2.9	155	2.9	0.411	14.5	LOS B	2.5	19.1	0.81	0.85	0.89	50.5
Appro	oach		567	2.9	567	2.9	0.411	10.1	LOS B	2.7	20.5	0.82	0.81	0.88	50.9
West	: Haym	an Rd													
10	L2	All MCs	166	1.8	166	1.8	0.383	8.5	LOSA	2.2	16.7	0.65	0.65	0.65	54.8
11	T1	All MCs	516	1.8	516	1.8	0.698	9.5	LOSA	7.7	57.8	0.77	0.76	0.90	51.1
12	R2	All MCs	386	1.8	386	1.8	0.698	15.3	LOS B	7.7	57.8	0.82	0.80	1.00	52.0
Appro	oach		1068	1.8	1068	1.8	0.698	11.5	LOS B	7.7	57.8	0.77	0.76	0.90	52.1
All Ve	hicles		2946	3.1	2946	3.1	0.698	9.5	LOSA	7.7	57.8	0.72	0.74	0.79	52.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:47:56 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

MOVEMENT SUMMARY

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK Received: 07/01/2025

NA

Site Category: (None)

Roundabout

Vehi		ovement													
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	[Total		[Total		Satn	Delay	Service	[Veh.	leue Dist]	Que	Stop Rate	No. of Cycles	Speed
South	n: Kent	St	veh/h	%	veh/h	%	v/c	sec		veh	m	_	_		km/h
1	L2	All MCs	443	2.6	443	2.6	0.439	7.1	LOSA	2.6	19.2	0.66	0.72	0.69	56.4
2	T1	All MCs	292	2.6	292	2.6	0.408	7.7	LOSA	2.2	16.5	0.66	0.71	0.69	52.1
3	R2	All MCs	54	2.6	54	2.6	0.408	13.3	LOS B	2.2	16.5	0.66	0.71	0.69	48.4
Appro	oach		788	2.6	788	2.6	0.439	7.7	LOSA	2.6	19.2	0.66	0.71	0.69	54.2
East:	Haym	an Rd													
4	L2	All MCs	105	2.9	105	2.9	0.418	7.5	LOSA	2.5	18.8	0.75	0.77	0.82	49.1
5	T1	All MCs	484	2.9	484	2.9	0.418	8.0	LOSA	2.5	18.8	0.75	0.79	0.83	52.0
6	R2	All MCs	49	2.9	49	2.9	0.418	14.0	LOS B	2.3	17.7	0.75	0.82	0.85	47.1
Appro	oach		639	2.9	639	2.9	0.418	8.4	LOSA	2.5	18.8	0.75	0.79	0.83	51.2
North	: Kent	St													
7	L2	All MCs	57	1.8	57	1.8	0.393	7.3	LOSA	2.4	17.9	0.74	0.68	0.75	49.3
8	T1	All MCs	472	1.8	472	1.8	0.393	7.1	LOSA	2.4	17.9	0.74	0.71	0.76	52.3
9	R2	All MCs	120	1.8	120	1.8	0.393	13.0	LOS B	2.3	17.0	0.74	0.77	0.77	52.1
Appro	oach		648	1.8	648	1.8	0.393	8.2	LOSA	2.4	17.9	0.74	0.72	0.76	52.0
West	Haym	an Rd													
10	L2	All MCs	146	1.0	146	1.0	0.310	7.8	LOSA	1.7	12.7	0.58	0.62	0.58	55.3
11	T1	All MCs	328	1.0	328	1.0	0.564	7.6	LOSA	4.6	34.0	0.65	0.67	0.67	52.3
12	R2	All MCs	433	1.0	433	1.0	0.564	13.0	LOS B	4.6	34.0	0.69	0.70	0.73	53.0
Appro	oach		907	1.0	907	1.0	0.564	10.2	LOS B	4.6	34.0	0.66	0.67	0.68	53.2
All Ve	hicles		2983	2.0	2983	2.0	0.564	8.7	LOSA	4.6	34.0	0.70	0.72	0.73	52.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:59:21 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

MOVEMENT SUMMARY

Site: 101-R [Hayman Rd / Kent St (Site Folder: 2024_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK Received: 07/01/2025

NA

Site Category: (None)

Roundabout

Vehic		ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class		ows	FI Total	OWS	Satn	Delay	Service	Qu [Veh.	eue Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m		rate	Cyclos	km/h
South	: Kent	St													
1	L2	All MCs	251	2.1	251	2.1	0.196	5.5	LOSA	0.9	6.6	0.36	0.54	0.36	58.0
2	T1	All MCs	212	2.1	212	2.1	0.205	5.9	LOSA	0.9	6.9	0.37	0.53	0.37	54.0
3	R2	All MCs	29	2.1	29	2.1	0.205	11.5	LOS B	0.9	6.9	0.37	0.53	0.37	50.6
Appro	ach		492	2.1	492	2.1	0.205	6.0	LOSA	0.9	6.9	0.36	0.53	0.36	55.8
East:	Haym	an Rd													
4	L2	All MCs	33	3.0	33	3.0	0.090	5.1	LOSA	0.4	2.8	0.45	0.52	0.45	51.3
5	T1	All MCs	147	3.0	147	3.0	0.090	5.2	LOSA	0.4	2.8	0.46	0.53	0.46	54.2
6	R2	All MCs	9	3.0	9	3.0	0.090	10.8	LOS B	0.4	2.7	0.46	0.54	0.46	49.0
Appro	ach		189	3.0	189	3.0	0.090	5.4	LOSA	0.4	2.8	0.46	0.53	0.46	53.5
North	: Kent	St													
7	L2	All MCs	13	2.0	13	2.0	0.150	5.1	LOSA	0.7	5.2	0.43	0.48	0.43	50.9
8	T1	All MCs	226	2.0	226	2.0	0.150	4.9	LOSA	0.7	5.2	0.43	0.52	0.43	53.9
9	R2	All MCs	99	2.0	99	2.0	0.150	10.5	LOS B	0.7	5.0	0.44	0.62	0.44	53.0
Appro	ach		338	2.0	338	2.0	0.150	6.5	LOSA	0.7	5.2	0.44	0.55	0.44	53.5
West:	Haym	nan Rd													
10	L2	All MCs	84	1.1	84	1.1	0.133	6.3	LOSA	0.6	4.6	0.39	0.53	0.39	56.2
11	T1	All MCs	162	1.1	162	1.1	0.243	6.0	LOSA	1.3	9.5	0.40	0.59	0.40	53.5
12	R2	All MCs	196	1.1	196	1.1	0.243	11.5	LOS B	1.3	9.5	0.40	0.61	0.40	54.4
Appro	ach		442	1.1	442	1.1	0.243	8.5	LOSA	1.3	9.5	0.40	0.59	0.40	54.5
All Ve	hicles		1461	1.9	1461	1.9	0.243	6.8	LOSA	1.3	9.5	0.40	0.55	0.40	54.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

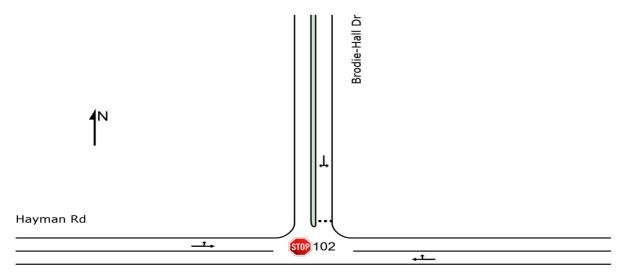
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 7:10:17 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

SITE LAYOUT


o Site: 102 [Hayman Rd / Karrak Dr / Brodie-Hall Dr (Site

Folder: 2024_AM)]

TOWN OF VICTORIA PARK Received: 07/01/2025

Site Category: (None) Stop (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Hayman Rd

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 11:02:19 AM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

o Site: 102 [Hayman Rd / Karrak Dr / Brodie-Hall Dr (Site

Folder: 2024_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Stop (Two-Way) TOWN OF VICTORIA PARK Received: 07/01/2025

Vehic	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of ueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Haym	an Rd													
5	T1	All MCs	467	4.4	467	4.4	0.313	0.9	LOSA	8.0	5.8	0.19	0.24	0.19	57.0
6	R2	All MCs	55	4.4	55	4.4	0.313	9.7	LOSA	0.8	5.8	0.19	0.24	0.19	54.7
Appro	ach		522	4.4	522	4.4	0.313	1.8	NA	8.0	5.8	0.19	0.24	0.19	56.6
North	Brodi	ie-Hall Dr													
7	L2	All MCs	1	0.0	1	0.0	0.004	7.0	LOSA	0.0	0.1	0.63	0.68	0.63	45.4
9	R2	All MCs	1	0.0	1	0.0	0.004	14.1	LOS B	0.0	0.1	0.63	0.68	0.63	43.6
Appro	ach		2	0.0	2	0.0	0.004	10.5	LOS B	0.0	0.1	0.63	0.68	0.63	44.6
West:	Haym	nan Rd													
10	L2	All MCs	60	3.9	60	3.9	0.347	5.6	LOSA	0.0	0.0	0.00	0.05	0.00	55.6
11	T1	All MCs	604	3.9	604	3.9	0.347	0.1	LOSA	0.0	0.0	0.00	0.05	0.00	58.9
Appro	ach		664	3.9	664	3.9	0.347	0.6	NA	0.0	0.0	0.00	0.05	0.00	58.5
All Ve	hicles		1188	4.1	1188	4.1	0.347	1.1	NA	0.8	5.8	0.08	0.13	0.08	57.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:47:57 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

🧓 Site: 102 [Hayman Rd / Karrak Dr / Brodie-Hall Dr (Site

Folder: 2024 PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Stop (Two-Way) TOWN OF VICTORIA PARK Received: 07/01/2025

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		lack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Haym	an Rd													
5	T1	All MCs	580	3.3	580	3.3	0.302	0.0	LOSA	0.0	0.1	0.00	0.00	0.00	60.0
6	R2	All MCs	1	0.0	1	0.0	0.302	5.7	LOSA	0.0	0.1	0.00	0.00	0.00	56.7
Appro	ach		581	3.2	581	3.2	0.302	0.0	NA	0.0	0.1	0.00	0.00	0.00	60.0
North	Brod	ie-Hall Dr													
7	L2	All MCs	77	2.7	77	2.7	0.226	6.6	LOSA	0.8	5.8	0.61	0.80	0.63	45.5
9	R2	All MCs	59	2.7	59	2.7	0.226	14.1	LOS B	0.8	5.8	0.61	0.80	0.63	43.6
Appro	ach		136	2.7	136	2.7	0.226	9.8	LOSA	0.8	5.8	0.61	0.80	0.63	44.7
West:	Haym	nan Rd													
10	L2	All MCs	1	0.0	1	0.0	0.227	5.6	LOSA	0.0	0.0	0.00	0.00	0.00	56.5
11	T1	All MCs	438	2.9	438	2.9	0.227	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	ach		439	2.9	439	2.9	0.227	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.8
All Ve	hicles		1156	3.0	1156	3.0	0.302	1.2	NA	0.8	5.8	0.07	0.09	0.07	56.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:59:22 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

p Site: 102 [Hayman Rd / Karrak Dr / Brodie-Hall Dr (Site

Folder: 2024_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Stop (Two-Way) TOWN OF VICTORIA PARK Received: 07/01/2025

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Haym	an Rd													
5	T1	All MCs	191	3.0	191	3.0	0.099	0.0	LOSA	0.0	0.1	0.00	0.00	0.00	59.9
6	R2	All MCs	1	0.0	1	0.0	0.099	5.6	LOSA	0.0	0.1	0.00	0.00	0.00	56.7
Appro	ach		192	3.0	192	3.0	0.099	0.0	NA	0.0	0.1	0.00	0.00	0.00	59.9
North	: Brod	ie-Hall Dr													
7	L2	All MCs	1	0.0	1	0.0	0.002	5.1	LOSA	0.0	0.0	0.32	0.52	0.32	48.5
9	R2	All MCs	1	0.0	1	0.0	0.002	6.9	LOSA	0.0	0.0	0.32	0.52	0.32	46.9
Appro	ach		2	0.0	2	0.0	0.002	6.0	LOSA	0.0	0.0	0.32	0.52	0.32	47.8
West:	Haym	nan Rd													
10	L2	All MCs	6	3.0	6	3.0	0.106	5.6	LOSA	0.0	0.0	0.00	0.02	0.00	56.2
11	T1	All MCs	198	3.0	198	3.0	0.106	0.0	LOSA	0.0	0.0	0.00	0.02	0.00	59.6
Appro	ach		204	3.0	204	3.0	0.106	0.2	NA	0.0	0.0	0.00	0.02	0.00	59.5
All Ve	hicles		398	3.0	398	3.0	0.106	0.1	NA	0.0	0.1	0.00	0.01	0.00	59.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

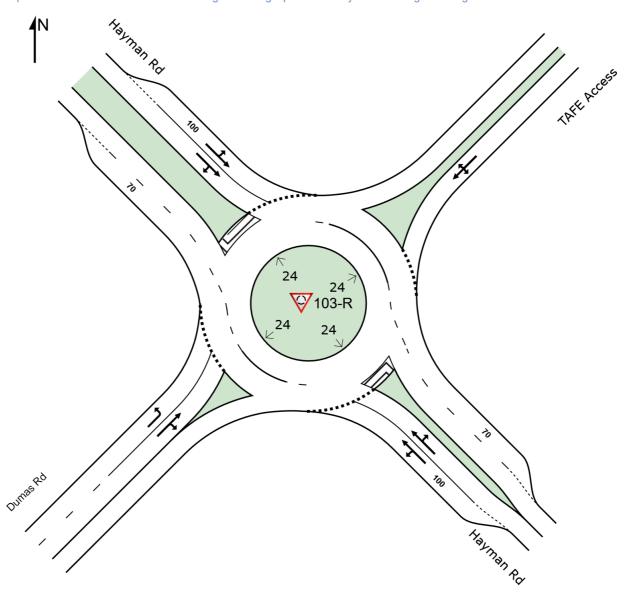
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 7:10:18 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

SITE LAYOUT

♥ Site: 103-R [Hayman Rd / Dumas Rd (Site Folder: 2024_AM)]


NA

Site Category: (None)

Roundabout

TOWN OF VICTORIA PARK Received: 07/01/2025

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 11:02:27 AM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

▼ Site: 103-R [Hayman Rd / Dumas Rd (Site Folder: 2024_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK Received: 07/01/2025

NA

Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rmaı	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	East:	Hayman l	Rd												
4	L2	All MCs	2	3.0	2	3.0	0.157	4.2	LOSA	0.8	6.4	0.17	0.37	0.17	50.1
5	T1	All MCs	609	3.0	609	3.0	0.307	4.4	LOSA	2.0	14.8	0.17	0.41	0.17	52.7
6	R2	All MCs	106	3.0	106	3.0	0.307	9.1	LOSA	2.0	14.8	0.17	0.43	0.17	49.4
Appro	ach		718	3.0	718	3.0	0.307	5.1	LOSA	2.0	14.8	0.17	0.41	0.17	52.1
North	East: ⁻	TAFE Acc	ess												
7	L2	All MCs	18	0.0	18	0.0	0.037	5.0	LOSA	0.1	1.1	0.45	0.60	0.45	48.6
8	T1	All MCs	1	0.0	1	0.0	0.037	4.1	LOSA	0.1	1.1	0.45	0.60	0.45	44.3
9	R2	All MCs	16	0.0	16	0.0	0.037	9.0	LOSA	0.1	1.1	0.45	0.60	0.45	46.4
Appro	ach		35	0.0	35	0.0	0.037	6.8	LOSA	0.1	1.1	0.45	0.60	0.45	47.5
North	West:	Hayman	Rd												
10	L2	All MCs	64	4.4	64	4.4	0.132	4.6	LOSA	0.7	5.3	0.29	0.44	0.29	48.2
11	T1	All MCs	458	4.4	458	4.4	0.258	4.5	LOSA	1.5	11.8	0.28	0.42	0.28	51.8
12	R2	All MCs	23	4.4	23	4.4	0.258	9.4	LOS A	1.5	11.8	0.28	0.41	0.28	46.0
Appro	ach		545	4.4	545	4.4	0.258	4.7	LOSA	1.5	11.8	0.28	0.42	0.28	51.2
South	West:	Duams F	Rd												
1	L2	All MCs	23 3	31.3	23 3	31.3	0.028	6.5	LOSA	0.1	1.0	0.51	0.58	0.51	40.1
2	T1	All MCs	13	31.3	1:	31.3	0.004	7.2	LOSA	0.0	0.1	0.55	0.59	0.55	42.1
3	R2	All MCs	13	31.3	13	31.3	0.004	12.2	LOS B	0.0	0.1	0.55	0.59	0.55	38.0
Appro	ach		25 3	31.3	25	31.3	0.028	6.8	LOSA	0.1	1.0	0.51	0.58	0.51	40.0
All Ve	hicles		1323	4.0	1323	4.0	0.307	5.0	LOSA	2.0	14.8	0.23	0.42	0.23	51.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:47:58 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

▼ Site: 103-R [Hayman Rd / Dumas Rd (Site Folder: 2024_PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK Received: 07/01/2025

NA

Site Category: (None)

Roundabout

		ovement								050/ 5			E ((^
Mov ID	Turn	Mov Class	Dem	lows		rival lows	Deg. Satn	Aver. Delay	Level of Service		Back Of eue	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
טו		Olass		HV]	Total veh/h		v/c	sec	OCI VICE	[Veh. veh	Dist] m	Que	Rate	Cycles	km/h
South	East:	Hayman I	Rd												
4	L2	All MCs	1	2.7	1	2.7	0.093	4.2	LOSA	0.5	3.7	0.19	0.38	0.19	50.0
5	T1	All MCs	411	2.7	411	2.7	0.182	4.3	LOSA	1.1	8.0	0.19	0.37	0.19	53.2
6	R2	All MCs	1	2.7	1	2.7	0.182	9.1	LOS A	1.1	8.0	0.18	0.37	0.18	49.9
Appro	ach		413	2.7	413	2.7	0.182	4.3	LOS A	1.1	8.0	0.19	0.37	0.19	53.2
North	East: 1	TAFE Acc	ess												
7	L2	All MCs	26	0.0	26	0.0	0.067	5.5	LOSA	0.3	1.9	0.47	0.65	0.47	48.2
8	T1	All MCs	1	0.0	1	0.0	0.067	4.5	LOSA	0.3	1.9	0.47	0.65	0.47	43.9
9	R2	All MCs	34	0.0	34	0.0	0.067	9.4	LOS A	0.3	1.9	0.47	0.65	0.47	45.9
Appro	ach		61	0.0	61	0.0	0.067	7.6	LOS A	0.3	1.9	0.47	0.65	0.47	47.0
North	West:	Hayman	Rd												
10	L2	All MCs	1	3.3	1	3.3	0.121	4.0	LOSA	0.7	5.1	0.06	0.37	0.06	49.2
11	T1	All MCs	569	3.3	569	3.3	0.236	4.1	LOSA	1.5	11.5	0.06	0.38	0.06	53.3
12	R2	All MCs	19	3.3	19	3.3	0.236	9.0	LOSA	1.5	11.5	0.06	0.38	0.06	47.7
Appro	ach		589	3.3	589	3.3	0.236	4.3	LOS A	1.5	11.5	0.06	0.38	0.06	53.2
South	West:	Duams F	Rd												
1	L2	All MCs	78	11.7	78	11.7	0.072	5.0	LOS A	0.3	2.3	0.41	0.52	0.41	44.5
2	T1	All MCs	1	11.7	1	11.7	0.010	5.1	LOSA	0.0	0.3	0.46	0.61	0.46	42.6
3	R2	All MCs	5	11.7	5	11.7	0.010	10.0	LOS B	0.0	0.3	0.46	0.61	0.46	42.6
Appro	ach		84	11.7	84	11.7	0.072	5.3	LOSA	0.3	2.3	0.42	0.53	0.42	44.3
All Ve	hicles		1147	3.5	1147	3.5	0.236	4.5	LOSA	1.5	11.5	0.15	0.40	0.15	52.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:59:24 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

▼ Site: 103-R [Hayman Rd / Dumas Rd (Site Folder: 2024_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK Received: 07/01/2025

NΑ

Site Category: (None)

Roundabout

Vehi	cle Mo	ovemen	t Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class		ows HV 1	ا-ا ا Total]	ows HV 1	Satn	Delay	Service	Qι [Veh.	eue Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m				km/h
South	East:	Hayman	Rd												
4	L2	All MCs	1	2.8	1	2.8	0.038	4.0	LOSA	0.2	1.4	0.04	0.37	0.04	50.8
5	T1	All MCs	184	2.8	184	2.8	0.075	3.9	LOSA	0.4	2.9	0.04	0.37	0.04	54.0
6	R2	All MCs	1	2.8	1	2.8	0.075	8.9	LOSA	0.4	2.9	0.04	0.37	0.04	50.5
Appro	oach		186	2.8	186	2.8	0.075	4.0	LOSA	0.4	2.9	0.04	0.37	0.04	54.0
North	East: ⁻	TAFE Acc	ess												
7	L2	All MCs	1	0.0	1	0.0	0.004	3.4	LOSA	0.0	0.1	0.27	0.48	0.27	49.0
8	T1	All MCs	1	0.0	1	0.0	0.004	3.1	LOSA	0.0	0.1	0.27	0.48	0.27	44.7
9	R2	All MCs	2	0.0	2	0.0	0.004	8.0	LOSA	0.0	0.1	0.27	0.48	0.27	46.7
Appro	oach		4	0.0	4	0.0	0.004	5.6	LOSA	0.0	0.1	0.27	0.48	0.27	46.9
North	West:	Hayman	Rd												
10	L2	All MCs	3	3.0	3	3.0	0.040	4.0	LOSA	0.2	1.5	0.03	0.38	0.03	49.4
11	T1	All MCs	189	3.0	189	3.0	0.078	3.9	LOSA	0.4	3.0	0.03	0.38	0.03	53.7
12	R2	All MCs	1	3.0	1	3.0	0.078	8.9	LOSA	0.4	3.0	0.03	0.38	0.03	48.1
Appro	oach		194	3.0	194	3.0	0.078	4.0	LOSA	0.4	3.0	0.03	0.38	0.03	53.6
South	West:	Duams F	Rd												
1	L2	All MCs	4	16.7	4	16.7	0.004	3.8	LOSA	0.0	0.1	0.26	0.39	0.26	44.0
2	T1	All MCs	1	16.7	1	16.7	0.002	3.3	LOSA	0.0	0.1	0.28	0.45	0.28	44.4
3	R2	All MCs	1	16.7	1	16.7	0.002	8.3	LOSA	0.0	0.1	0.28	0.45	0.28	43.2
Appro	ach		6	16.7	6	16.7	0.004	4.5	LOSA	0.0	0.1	0.27	0.41	0.27	43.9
All Ve	hicles		391	3.1	391	3.1	0.078	4.0	LOSA	0.4	3.0	0.04	0.38	0.04	53.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

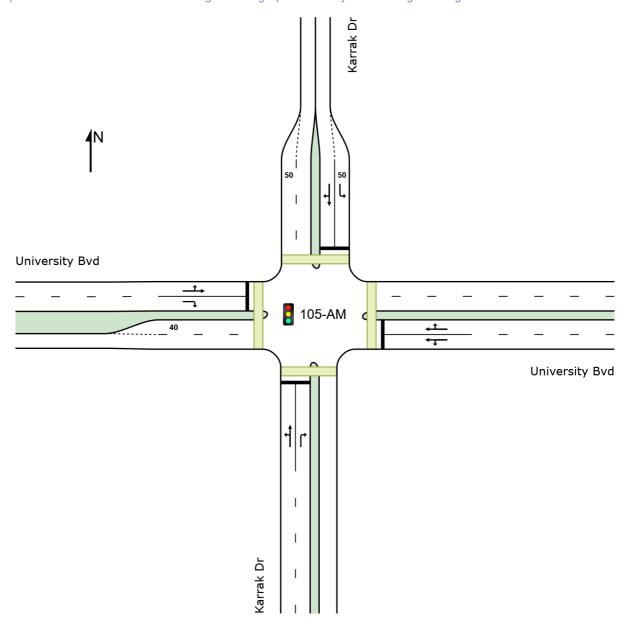
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 7:10:20 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

SITE LAYOUT

Site: 105-AM [University Bvd / Karrak Dr (Site Folder: 2024_AM)]


TOWN OF VICTORIA PARK Received: 07/01/2025

Four-way intersection with 2-lane approaches (Signals)

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 11:02:35 AM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: 105-AM [University Bvd / Karrak Dr (Site Folder:

2024_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Four-way intersection with 2-lane approaches (Signals)

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 79 seconds (Site User-Given Phase Times)

TOWN OF VICTORIA PARK

Received: 07/01/2025

Vehi	cle Mo	ovement	t Performar	псе									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %		Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Ba Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Karra	ak Dr	ven/m /o	<u>ven/m /o</u>	V/C	366		Ven	'''				KIII/II
1	L2	All MCs	32 5.3	32 5.3	0.215	38.4	LOS D	1.9	14.3	0.92	0.72	0.92	27.7
2	T1	All MCs	23 5.3	23 5.3	* 0.215	33.9	LOS C	1.9	14.3	0.92	0.72	0.92	33.4
3	R2	All MCs	29 ^{100.} 0	29 ^{100.} 0	0.195	40.1	LOS D	1.1	14.0	0.92	0.72	0.92	28.5
Appro	oach		84 38.5	84 38.5	0.215	37.8	LOS D	1.9	14.3	0.92	0.72	0.92	29.7
East:	Unive	rsity Bvd											
4	L2	All MCs	39 21.0	39 21.0	0.110	8.3	LOSA	1.8	15.1	0.50	0.51	0.50	41.0
5	T1	All MCs	62 21.0	62 21.0	0.110	12.1	LOS B	1.8	15.1	0.50	0.51	0.50	38.0
6	R2	All MCs	64 21.0	64 21.0	0.133	18.3	LOS B	1.5	12.0	0.61	0.68	0.61	37.2
Appro	oach		165 21.0	165 21.0	0.133	13.6	LOS B	1.8	15.1	0.54	0.57	0.54	38.4
North	: Karra	ak Dr											
7	L2	All MCs	13 5.3	13 5.3	* 0.043	35.0	LOS D	0.4	3.1	0.87	0.67	0.87	30.7
8	T1	All MCs	1 5.3	1 5.3	0.039	30.4	LOS C	0.4	2.8	0.87	0.66	0.87	34.0
9	R2	All MCs	11 5.3	11 5.3	0.039	35.1	LOS D	0.4	2.8	0.87	0.66	0.87	28.4
Appro	oach		24 5.3	24 5.3	0.043	34.9	LOS C	0.4	3.1	0.87	0.67	0.87	29.9
West	: Unive	ersity Bvd											
10	L2	All MCs	113 20.7	113 20.7	0.270	15.8	LOS B	5.1	41.6	0.58	0.60	0.58	37.9
11	T1	All MCs	127 20.7	127 20.7	* 0.270	10.9	LOS B	5.1	41.6	0.58	0.60	0.58	36.1
12	R2	All MCs	35 20.7	35 20.7	0.057	15.4	LOS B	0.7	5.6	0.53	0.64	0.53	36.8
Appro	oach		275 20.7	275 20.7	0.270	13.4	LOS B	5.1	41.6	0.58	0.60	0.58	37.0
All Ve	hicles		548 22.8	548 22.8	0.270	18.2	LOS B	5.1	41.6	0.63	0.62	0.63	35.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Mov	Input	Dem.	Aver.			BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	:UE Dist]	Que	Stop Rate	Time	Dist. S	Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Karrak	Dr										
P1 Full	50	53	14.0	LOS B	0.1	0.1	0.60	0.60	167.9	200.0	1.19
East: Universi	ty Bvd										

TOWN OF VICTORIA PARK Received: 07/01/2025

P2 Full	50	53	33.8	LOS D	0.1	0.1	0.93	0.93	187.6	200.0	1.07
North: Karrak	Dr										
P3 Full	50	53	15.2	LOS B	0.1	0.1	0.62	0.62	169.1	200.0	1.18
West: Univers	sity Bvd										
P4 Full	50	53	33.8	LOS D	0.1	0.1	0.93	0.93	187.6	200.0	1.07
All Pedestrians	200	211	24.2	LOSC	0.1	0.1	0.77	0.77	178.1	200.0	1.12

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:48:02 PM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: 105-PM [University Bvd / Karrak Dr (Site Folder:

2024_PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Four-way intersection with 2-lane approaches (Signals)

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 54 seconds (Site User-Given Phase Times)

TOWN OF VICTORIA PARK

Received: 07/01/2025

Vehic	cle Mo	ovement	Performa	nce									
Mov ID	Turn	Mov	Demand	Arrival	Deg.	Aver.	Level of	95% Ba		Prop.	Eff.	Aver.	Aver.
טו		Class	Flows [Total HV]	Flows [Total HV]	Satn	Delay	Service	Que [Veh.	ue Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h %	veh/h %	v/c	sec		veh	m				km/h
South	: Karra	ak Dr											
1	L2	All MCs	40 2.7	40 2.7	0.121	24.2	LOS C	1.0	7.2	0.85	0.70	0.85	32.5
2	T1	All MCs	5 2.7	5 2.7	* 0.121	19.7	LOS B	1.0	7.2	0.85	0.70	0.85	37.8
3	R2	All MCs	21 ^{100.} 0	21 ^{100.} 0	0.095	25.5	LOS C	0.5	6.2	0.84	0.69	0.84	33.3
Appro	ach		66 33.6	66 33.6	0.121	24.2	LOS C	1.0	7.2	0.85	0.70	0.85	33.3
East:	Unive	rsity Bvd											
4	L2	All MCs	45 9.9	45 9.9	0.363	8.9	LOSA	4.7	35.5	0.77	0.67	0.77	39.0
5	T1	All MCs	207 9.9	207 9.9	* 0.363	15.7	LOS B	4.7	35.5	0.77	0.67	0.77	34.8
6	R2	All MCs	32 9.9	32 9.9	0.107	20.0	LOS B	0.9	6.8	0.74	0.66	0.74	37.5
Appro	ach		284 9.9	284 9.9	0.363	15.1	LOS B	4.7	35.5	0.77	0.67	0.77	36.1
North	: Karra	ak Dr											
7	L2	All MCs	60 2.7	60 2.7	0.162	24.4	LOS C	1.4	9.7	0.86	0.73	0.86	34.5
8	T1	All MCs	4 2.7	4 2.7	* 0.396	21.1	LOS C	3.5	25.3	0.91	0.77	0.91	37.1
9	R2	All MCs	143 2.7	143 2.7	0.396	26.1	LOS C	3.5	25.3	0.91	0.77	0.91	31.9
Appro			207 2.7	207 2.7	0.396	25.5	LOS C	3.5	25.3	0.89	0.76	0.89	32.8
West:	Unive	rsity Bvd											
10	L2	All MCs	29 10.9	29 10.9	0.270	18.5	LOS B	3.3	25.4	0.76	0.64	0.76	37.1
11	T1	All MCs	142 10.9	142 10.9	0.270	13.8	LOS B	3.3	25.4	0.76	0.64	0.76	34.9
12	R2	All MCs	26 10.9	26 10.9	0.078	21.6	LOS C	0.5	4.2	0.78	0.69	0.78	33.7
Appro	ach		198 10.9	198 10.9	0.270	15.6	LOS B	3.3	25.4	0.76	0.65	0.76	35.1
All Ve	hicles		756 10.3	756 10.3	0.396	18.9	LOS B	4.7	35.5	0.81	0.69	0.81	34.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist. S	Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
South: Karrak	Dr										
P1 Full	50	53	18.8	LOS B	0.1	0.1	0.84	0.84	172.6	200.0	1.16
East: Universi	tv Bvd										

TOWN OF VICTORIA PARK Received: 07/01/2025

P2 Full	50	53	21.4	LOS C	0.1	0.1	0.89	0.89	175.2	200.0	1.14
North: Karrak	Dr										
P3 Full	50	53	20.5	LOS C	0.1	0.1	0.87	0.87	174.3	200.0	1.15
West: Univers	ity Bvd										
P4 Full	50	53	21.4	LOS C	0.1	0.1	0.89	0.89	175.2	200.0	1.14
All Pedestrians	200	211	20.5	LOSC	0.1	0.1	0.87	0.87	174.4	200.0	1.15

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:59:27 PM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: 105-SAT [University Bvd / Karrak Dr (Site Folder:

2024_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Four-way intersection with 2-lane approaches (Signals)

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site User-Given Phase Times)

TOWN OF VICTORIA PARK

Received: 07/01/2025

Vehic	cle Mo	ovement	Performa	псе	_		_						
Mov ID	Turn	Mov Class	Demand Flows [Total HV]	Arrival Flows [Total HV]	Deg. Satn	Aver. Delay	Level of Service	95% Ba Que [Veh.		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h %		v/c	sec		veh	m [*]			,	km/h
South	ı: Karra	ak Dr											
1	L2	All MCs	13 1.3	13 1.3	0.074	37.8	LOS D	0.7	4.7	0.90	0.67	0.90	27.8
2	T1	All MCs	6 1.3	6 1.3	* 0.074	33.3	LOS C	0.7	4.7	0.90	0.67	0.90	33.4
3	R2	All MCs	8 100. 0	8 100. 0	0.056	39.5	LOS D	0.3	3.9	0.90	0.67	0.90	28.7
Appro	oach		27 31.7	27 31.7	0.074	37.3	LOS D	0.7	4.7	0.90	0.67	0.90	29.6
East:	Unive	rsity Bvd											
4	L2	All MCs	14 11.4	14 11.4	0.078	6.6	LOSA	1.3	10.3	0.44	0.40	0.44	42.7
5	T1	All MCs	69 11.4	69 11.4	0.078	8.1	LOSA	1.3	10.3	0.44	0.40	0.44	40.5
6	R2	All MCs	31 11.4	31 11.4	0.047	13.6	LOS B	0.5	4.2	0.48	0.63	0.48	39.6
Appro	oach		114 11.4	114 11.4	0.078	9.4	LOSA	1.3	10.3	0.45	0.46	0.45	40.5
North	: Karra	ak Dr											
7	L2	All MCs	9 1.3	9 1.3	0.041	38.6	LOS D	0.3	2.4	0.90	0.66	0.90	29.6
8	T1	All MCs	1 1.3	1 1.3	* 0.169	35.0	LOS D	1.4	10.0	0.93	0.72	0.93	32.5
9	R2	All MCs	38 1.3	38 1.3	0.169	39.7	LOS D	1.4	10.0	0.93	0.72	0.93	26.9
Appro			48 1.3	48 1.3	0.169	39.4	LOS D	1.4	10.0	0.92	0.71	0.92	27.6
West:	Unive	ersity Bvd											
10	L2	All MCs	108 9.7	108 9.7	0.162	12.7	LOS B	3.0	22.5	0.48	0.58	0.48	39.3
11	T1	All MCs	60 9.7	60 9.7	* 0.162	8.0	LOSA	3.0	22.5	0.48	0.58	0.48	37.7
12	R2	All MCs	14 9.7	14 9.7	0.019	12.4	LOS B	0.2	1.7	0.45	0.60	0.45	38.6
Appro	oach		182 9.7	182 9.7	0.162	11.1	LOS B	3.0	22.5	0.48	0.58	0.48	38.8
All Ve	hicles		372 10.8	372 10.8	0.169	16.2	LOS B	3.0	22.5	0.56	0.57	0.56	36.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian I	Input	Dem.	Aver.	· ·	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID Crossing		Flow	Delay	Service	QUE		Que	Stop Rate	Time		Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Karrak	Dr										
P1 Full	50	53	11.6	LOS B	0.1	0.1	0.54	0.54	165.4	200.0	1.21
East: Universi	ty Bvd										

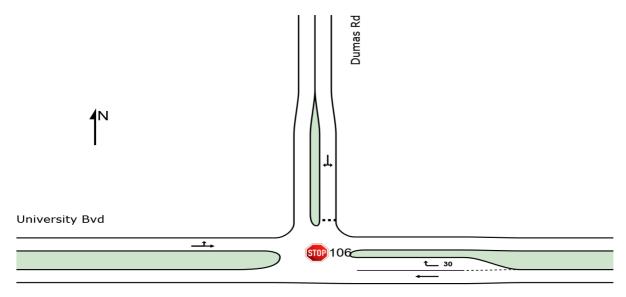
TOWN OF VICTORIA PARK Received: 07/01/2025

P2 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06
North: Karrak	Dr										
P3 Full	50	53	12.7	LOS B	0.1	0.1	0.56	0.56	166.5	200.0	1.20
West: Univers	sity Bvd										
P4 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06
All Pedestrians	200	211	23.2	LOS C	0.1	0.1	0.74	0.74	177.1	200.0	1.13

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 7:10:24 PM


Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

SITE LAYOUT

Site: 106 [University Bvd / Dumas Rd (Site Folder: 2024_AM)]

NA Site Category: (None) Stop (Two-Way) TOWN OF VICTORIA PARK Received: 07/01/2025

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

University Bvd

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 11:02:42 AM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: 106 [University Bvd / Dumas Rd (Site Folder: 2024_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK Received: 07/01/2025

NA

Site Category: (None) Stop (Two-Way)

Vehic	cle Mo	ovemen	t Performai	псе									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Unive	rsity Bvd											
2	T1	All MCs	185 21.1	185 21.1	0.107	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	50.0
3	R2	All MCs	63 21.1	63 21.1	0.045	5.3	LOSA	0.2	1.7	0.27	0.52	0.27	43.4
Appro	ach		248 21.1	248 21.1	0.107	1.4	NA	0.2	1.7	0.07	0.13	0.07	48.2
North	: Dum	as Rd											
4	L2	All MCs	4 10.6	4 10.6	0.057	4.9	LOSA	0.2	1.6	0.43	0.59	0.43	46.3
6	R2	All MCs	38 10.6	38 10.6	0.057	7.5	LOSA	0.2	1.6	0.43	0.59	0.43	42.7
Appro	ach		42 10.6	42 10.6	0.057	7.2	LOSA	0.2	1.6	0.43	0.59	0.43	43.2
West	Unive	ersity Bvd											
7	L2	All MCs	59 24.4	59 24.4	0.080	4.8	LOSA	0.0	0.0	0.00	0.24	0.00	44.8
8	T1	All MCs	74 24.4	74 24.4	0.080	0.0	LOSA	0.0	0.0	0.00	0.24	0.00	48.3
Appro	ach		133 24.4	133 24.4	0.080	2.1	NA	0.0	0.0	0.00	0.24	0.00	47.0
All Ve	hicles		423 21.1	423 21.1	0.107	2.2	NA	0.2	1.7	0.08	0.21	0.08	47.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:48:03 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: 106 [University Bvd / Dumas Rd (Site Folder: 2024_PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK Received: 07/01/2025

NA

Site Category: (None) Stop (Two-Way)

Vehic	cle Mo	ovement	t Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Unive	rsity Bvd											
2	T1	All MCs	257 10.0	257 10.0	0.139	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	49.9
3	R2	All MCs	40 10.0	40 10.0	0.028	5.3	LOS A	0.1	0.9	0.30	0.52	0.30	43.5
Appro	ach		297 10.0	297 10.0	0.139	0.7	NA	0.1	0.9	0.04	0.07	0.04	49.0
North	Dum	as Rd											
4	L2	All MCs	22 9.4	22 9.4	0.075	5.1	LOS A	0.3	2.2	0.42	0.58	0.42	46.4
6	R2	All MCs	37 9.4	37 9.4	0.075	8.4	LOS A	0.3	2.2	0.42	0.58	0.42	42.9
Appro	ach		59 9.4	59 9.4	0.075	7.1	LOSA	0.3	2.2	0.42	0.58	0.42	44.4
West:	Unive	ersity Bvd											
7	L2	All MCs	46 12.4	46 12.4	0.098	4.7	LOSA	0.0	0.0	0.00	0.14	0.00	46.0
8	T1	All MCs	129 12.4	129 12.4	0.098	0.0	LOS A	0.0	0.0	0.00	0.14	0.00	49.0
Appro	ach		176 12.4	176 12.4	0.098	1.2	NA	0.0	0.0	0.00	0.14	0.00	48.4
All Ve	hicles		532 10.7	532 10.7	0.139	1.6	NA	0.3	2.2	0.07	0.15	0.07	48.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:59:29 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106 300304837 SIDRA.sip9

🚋 Site: 106 [University Bvd / Dumas Rd (Site Folder:

2024_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Stop (Two-Way) TOWN OF VICTORIA PARK Received: 07/01/2025

Vehic	cle M	ovemen	t Performa	псе									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Unive	rsity Bvd											
2	T1	All MCs	85 10.9	85 10.9	0.046	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	50.0
3	R2	All MCs	7 10.9	7 10.9	0.005	4.8	LOS A	0.0	0.2	0.13	0.49	0.13	44.0
Appro	ach		93 10.9	93 10.9	0.046	0.4	NA	0.0	0.2	0.01	0.04	0.01	49.5
North	: Dum	as Rd											
4	L2	All MCs	3 8.6	3 8.6	0.015	4.7	LOSA	0.1	0.4	0.21	0.49	0.21	47.7
6	R2	All MCs	13 8.6	13 8.6	0.015	5.4	LOS A	0.1	0.4	0.21	0.49	0.21	44.5
Appro	ach		16 8.6	16 8.6	0.015	5.3	LOSA	0.1	0.4	0.21	0.49	0.21	45.3
West	Unive	ersity Bvd											
7	L2	All MCs	8 11.6	8 11.6	0.024	4.7	LOSA	0.0	0.0	0.00	0.10	0.00	46.4
8	T1	All MCs	36 11.6	36 11.6	0.024	0.0	LOS A	0.0	0.0	0.00	0.10	0.00	49.3
Appro	ach		44 11.6	44 11.6	0.024	0.9	NA	0.0	0.0	0.00	0.10	0.00	48.9
All Ve	hicles		153 10.9	153 10.9	0.046	1.0	NA	0.1	0.4	0.03	0.10	0.03	48.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

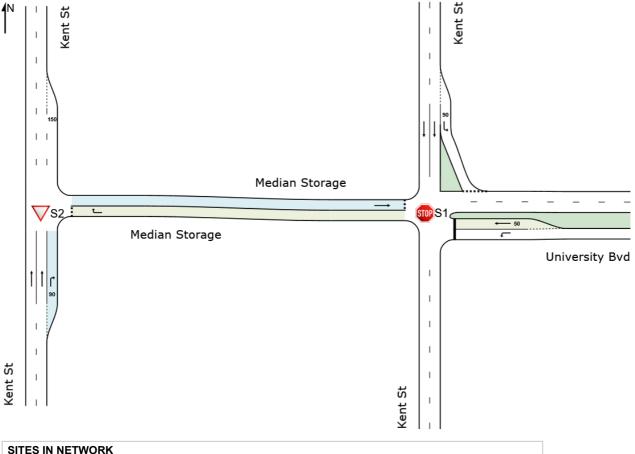
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 7:10:25 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

NETWORK LAYOUT


■■ Network: N101 [AM_Kent St / University Bvd (Network

Folder: 2024)]

New Network

Network Category: (None)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

TOWN OF VICTORIA PARK

Received: 07/01/2025

SITES IN N	NETWORK	
Site ID	CCG ID	Site Name
 \$1	NA	Kent St / University Bvd
∇s2	NA	Kent St / Univeristy Bvd

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 11:04:08 AM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: S1 [Kent St / University Bvd (Site Folder: 2024_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK
Received: 07/01/2025
Network: N101 [AM_Kent

St / University Bvd (Network Folder: 2024)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Stop (Two-Way)

Vehic	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Bac [Veh. veh	k Of Queu Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Unive	rsity Bvd		- , ,		,,	.,,,								
1 2	L2 T1	All MCs		22.8 22.8	62 2 41 2		0.072 0.108	10.3 15.7	LOS B LOS C	0.3 0.3	2.3 2.7	0.43 0.66	0.91 1.02	0.43 0.66	42.3 23.4
Appro		All MCS	1032		103 2		0.108	12.4	LOS B	0.3	2.7	0.52	0.95	0.52	38.0
North	: Kent	St													
3	L2	All MCs	136	4.3	136	4.3	0.110	7.2	LOSA	0.5	3.3	0.26	0.57	0.26	47.6
4	T1	All MCs	653	4.3	653	4.3	0.172	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	69.9
Appro	ach		788	4.3	788	4.3	0.172	1.3	LOSA	0.5	3.3	0.04	0.10	0.04	66.4
West	Media	an Storag	je												
5	T1	All MCs	134	3.0	134	3.0	0.170	3.1	LOSA	0.6	4.4	0.54	0.51	0.54	31.2
Appro	oach		134	3.0	134	3.0	0.170	3.1	LOSA	0.6	4.4	0.54	0.51	0.54	31.2
All Ve	hicles		1025	6.0	1025	6.0	0.172	2.6	NA	0.6	4.4	0.16	0.24	0.16	61.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab)

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 7:12:27 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

V Site: S2 [Kent St / Univeristy Bvd (Site Folder: 2024_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK
Received: 07/01/2025
Network: N101 [AM_Kent

St / University Bvd (Network Folder: 2024)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Give-Way (Two-Way)

Vehi	cle M	ovement	Perfor	manc	се										
Mov ID	Turn	Mov Class	Dema Flo			ival ows	Deg. Satn	Aver. Delay	Level of Service	95% Back	COf Queue	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total H\ veh/h	V] [T % v∈		HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Kent	St													
2	T1	All MCs	832 3	3.0	832	3.0	0.217	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	69.9
3	R2	All MCs	134 3	3.0	134	3.0	0.074	6.4	LOSA	0.0	0.0	0.00	0.66	0.00	56.4
Appro	oach		965 3	3.0	965	3.0	0.217	0.9	NA	0.0	0.0	0.00	0.09	0.00	68.4
East:	Media	ın Storage	9												
1	R2	All MCs	41 22	2.8	412	22.8	0.116	10.9	LOS B	0.4	3.2	0.71	0.77	0.71	32.9
Appro	oach		41 22	2.8	41 2	22.8	0.116	10.9	LOS B	0.4	3.2	0.71	0.77	0.71	32.9
All Ve	hicles		1006 3	3.8 1	006	3.8	0.217	1.3	NA	0.4	3.2	0.03	0.12	0.03	67.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 7:12:27 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106 300304837 SIDRA.sip9

Site: S1 [Kent St / University Bvd (Site Folder: 2024_PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK
Received: 07/01/2025
Network: N101 [PM_Kent

St / University Bvd (Network Folder: 2024)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Stop (Two-Way)

Vehic	cle M	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Unive	rsity Bvd													
1 2	L2 T1	All MCs All MCs	262 118		262 118		0.350 0.420	12.2 21.7	LOS B LOS C	0.7 0.6	5.7 4.6	0.59 0.82	1.01 1.10	0.71 1.09	42.5 18.9
Appro	ach		380	15.9	380	15.9	0.420	15.2	LOS C	0.7	5.7	0.66	1.03	0.83	37.8
North	: Kent	St													
3	L2	All MCs	119	2.7	119	2.7	0.089	6.8	LOSA	0.1	1.1	0.16	0.55	0.16	48.3
4	T1	All MCs	925	2.7	925	2.7	0.241	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	69.9
Appro	ach		1044	2.7	1044	2.7	0.241	0.8	LOSA	0.1	1.1	0.02	0.06	0.02	67.7
West:	Media	an Storag	е												
5	T1	All MCs	63	1.6	63	1.6	0.110	4.9	LOSA	0.1	1.1	0.64	0.64	0.64	28.7
Appro	ach		63	1.6	63	1.6	0.110	4.9	LOSA	0.1	1.1	0.64	0.64	0.64	28.7
All Ve	hicles		1487	6.0	1487	6.0	0.420	4.7	NA	0.7	5.7	0.21	0.34	0.25	58.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab)

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 7:12:31 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

V Site: S2 [Kent St / Univeristy Bvd (Site Folder: 2024_PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK
Received: 07/01/2025

Network: N101 [PM_Kent St / University Bvd (Network Folder: 2024)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Give-Way (Two-Way)

Vehic	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Flo	and ows		rival ows	Deg. Satn	Aver. Delay	Level of Service	Aver. Bacl	k Of Queue	e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total I veh/h		[Total l veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	ı: Kent	St													
2	T1	All MCs	677	1.6	677	1.6	0.175	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	69.9
3	R2	All MCs	63	1.6	63	1.6	0.034	6.4	LOSA	0.0	0.0	0.00	0.66	0.00	56.4
Appro	oach		740	1.6	740	1.6	0.175	0.6	NA	0.0	0.0	0.00	0.06	0.00	69.0
East:	Media	ın Storage	Э												
1	R2	All MCs	118 1	15.9	118	15.9	0.233	7.9	LOSA	0.4	2.9	0.64	0.75	0.67	37.0
Appro	oach		118 1	15.9	118	15.9	0.233	7.9	LOSA	0.4	2.9	0.64	0.75	0.67	37.0
All Ve	hicles		858	3.5	858	3.5	0.233	1.6	NA	0.4	2.9	0.09	0.15	0.09	65.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 7:12:31 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106 300304837 SIDRA.sip9

Site: S1 [Kent St / University Bvd (Site Folder: 2024_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK Received: 07/01/2025

■■ Network: N101 [SAT_Kent St / University Bvd (Network

Folder: 2024)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Stop (Two-Way)

Vehic	cle Mo	ovemen	t Perform	ance									
Mov ID	Turn	Mov Class			Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Unive	rsity Bvd											
1 2	L2 T1	All MCs All MCs			0.086 0.036	9.4 11.7	LOS A LOS B	0.3 0.1	2.8 0.9	0.34 0.49	0.90 0.96	0.34 0.49	43.4 27.2
Appro	ach		108 20.4	108 20.4	0.086	9.8	LOSA	0.3	2.8	0.37	0.91	0.37	42.0
North	: Kent	St											
3	L2	All MCs	27 2.1	27 2.1	0.022	7.1	LOSA	0.1	0.6	0.24	0.55	0.24	47.9
4	T1	All MCs	433 2.1	433 2.1	0.112	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	69.9
Appro	ach		460 2.1	460 2.1	0.112	0.4	LOSA	0.1	0.6	0.01	0.03	0.01	68.8
West:	Media	an Storag	je										
5	T1	All MCs	139 1.6	139 1.6	0.137	1.7	LOSA	0.5	3.6	0.43	0.35	0.43	33.8
Appro	ach		139 1.6	139 1.6	0.137	1.7	LOSA	0.5	3.6	0.43	0.35	0.43	33.8
All Ve	hicles		707 4.8	707 4.8	0.137	2.1	NA	0.5	3.6	0.15	0.23	0.15	60.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab)

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 7:12:35 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

V Site: S2 [Kent St / Univeristy Bvd (Site Folder: 2024_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK Received: 07/01/2025

■■ Network: N101 [SAT_Kent St / University Bvd (Network

Folder: 2024)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Give-Way (Two-Way)

Vehic	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem: Flo	and ows		rival ows	Deg. Satn	Aver. Delay	Level of Service	95% Back	c Of Queue	e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total F veh/h		[Total l veh/h	HV]	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	ı: Ken	St													
2	T1	All MCs	472	1.6	472	1.6	0.122	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	69.9
3	R2	All MCs	139	1.6	139	1.6	0.076	6.4	LOSA	0.0	0.0	0.00	0.66	0.00	56.4
Appro	oach		611	1.6	611	1.6	0.122	1.5	NA	0.0	0.0	0.00	0.15	0.00	67.5
East:	Media	n Storage	е												
1	R2	All MCs	21 2	20.4	21 2	20.4	0.032	4.5	LOSA	0.1	0.9	0.50	0.50	0.50	39.3
Appro	oach		21 2	20.4	21 2	20.4	0.032	4.5	LOSA	0.1	0.9	0.50	0.50	0.50	39.3
All Ve	hicles		632	2.3	632	2.3	0.122	1.6	NA	0.1	0.9	0.02	0.16	0.02	66.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

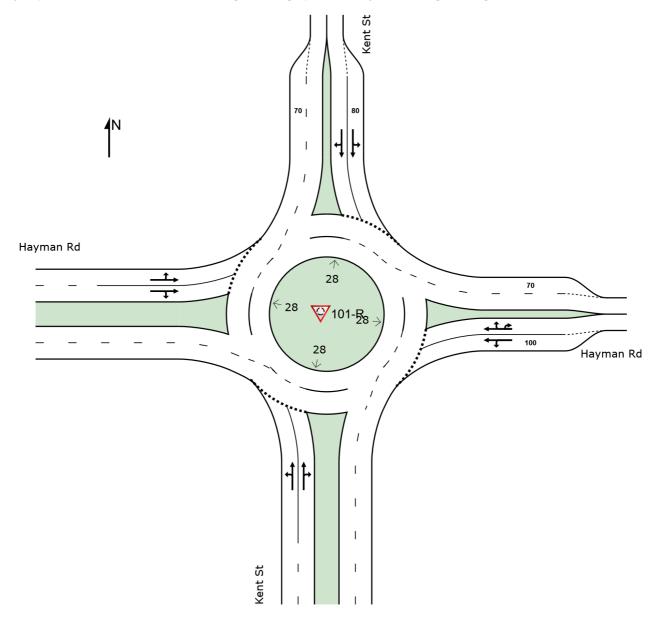
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 7:12:35 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106 300304837 SIDRA.sip9

SITE LAYOUT

♥ Site: 101-R [Hayman Rd / Kent St (Site Folder: 2029 +DEV_AM)]


TOWN OF VICTORIA PARK Received: 07/01/2025

NA

Site Category: (None)

Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 10:58:17 AM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

▼ Site: 101-R [Hayman Rd / Kent St (Site Folder: 2029)

+DEV_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None)

Roundabout

North: Kent St

L2 All MCs

T1 All MCs

R2 All MCs

L2 All MCs

T1 All MCs

R2 All MCs

68 2.9

366 2.9

163 2.9

598 2.9

174 1.8

555 18

405 1.8

1134 1.8 1134 1.8

68 2.9

366 2.9

163 2.9

598 2.9

174 1.8

555 18

405 1.8

0.474

0.474

0.474

0.474

0.420

0.765

0.765

0.765

10.5

9.6

16.0

11.4

8.9

11 0

17.2

12.9

LOS B

LOS A

LOS B

LOS B

LOSA

LOS B

LOS B

LOS B

3.4

3.4

3.1

3.4

2.6

10.0

10.0

10.0

26.1

26.1

23.8

26.1

19.1

75.1

75.1

75.1

0.88

0.87

0.86

0.87

0.68

0.84

0.90

0.84

0.84

0.86

0.90

0.87

0.68

0.82

0.88

0.82

1.00

1.00

1.01

1.01

0.69

1.06

1.20

1.05

48.2

50.8

49.5

50.1

54.5

50.0

50.8

51.1

7

9

11

12

Approach

Approach

West: Hayman Rd

		ovemen					D	Λ	11	050/ 5) I- Of	D	Ε#	A	A
Mov ID	Turn	Mov Class	Dem	lows		rival lows	Deg. Satn	Aver. Delay	Level of Service		Back Of eue	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
יםו		Olass	[Total	HV]	[Total l	HV]			OCIVICE	[Veh.	Dist]	Que	Rate	Cycles	
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	ı: Kent	St													
1	L2	All MCs	476	4.4	476	4.4	0.464	7.2	LOSA	2.7	21.1	0.65	0.71	0.69	55.8
2	T1	All MCs	320	4.3	320	4.3	0.467	8.0	LOSA	2.7	20.8	0.67	0.74	0.73	51.4
3	R2	All MCs	91	4.4	91	4.4	0.467	13.6	LOS B	2.7	20.8	0.67	0.74	0.73	47.7
Appro	oach		886	4.4	886	4.4	0.467	8.1	LOS A	2.7	21.1	0.66	0.73	0.71	53.4
East:	Haym	an Rd													
4	L2	All MCs	58	3.8	58	3.8	0.325	6.7	LOSA	1.7	13.4	0.71	0.66	0.71	49.1
5	T1	All MCs	373	3.9	373	3.9	0.325	6.9	LOSA	1.7	13.4	0.71	0.70	0.71	51.8
6	R2	All MCs	61	3.9	61	3.9	0.325	12.8	LOS B	1.6	12.4	0.71	0.76	0.71	46.5
6u	U	All MCs	14	3.8	14	3.8	0.325	15.2	LOS B	1.6	12.4	0.71	0.76	0.71	42.1
Appro	oach		505	3.9	505	3.9	0.325	7.8	LOSA	1.7	13.4	0.71	0.71	0.71	50.6

TOWN OF VICTORIA PARK

Received: 07/01/2025

All Vehicles 3123 3.1 3123 3.1 0.765 10.4 LOS B 10.0 75.1 0.77 0.78 0.89 51.4 Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:57:29 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

▼ Site: 101-R [Hayman Rd / Kent St (Site Folder: 2029)

+DEV_PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Site Category: (None)

Roundabout

TOWN OF VICTORIA PARK Received: 07/01/2025

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Kent	St													
1	L2	All MCs	465	2.6	465	2.6	0.508	8.0	LOSA	3.3	24.8	0.75	0.80	0.85	56.0
2	T1	All MCs	306	2.6	306	2.6	0.484	8.9	LOSA	2.9	21.6	0.74	0.82	0.85	51.6
3	R2	All MCs	56	2.6	56	2.6	0.484	14.5	LOS B	2.9	21.6	0.74	0.82	0.85	47.7
Appro	oach		827	2.6	827	2.6	0.508	8.7	LOSA	3.3	24.8	0.75	0.81	0.85	53.8
East:	Haym	an Rd													
4	L2	All MCs	94	2.9	94	2.9	0.542	8.9	LOSA	3.8	29.0	0.82	0.86	1.01	48.3
5	T1	All MCs	563	2.9	563	2.9	0.542	9.4	LOSA	3.8	29.0	0.82	0.89	1.02	50.5
6	R2	All MCs	25	2.9	25	2.9	0.542	15.7	LOS B	3.5	26.7	0.82	0.92	1.03	44.7
6u	U	All MCs	106	2.9	106	2.9	0.542	18.0	LOS B	3.5	26.7	0.82	0.92	1.03	39.6
Appro	oach		788	2.9	788	2.9	0.542	10.7	LOS B	3.8	29.0	0.82	0.89	1.02	48.8
North	: Kent	St													
7	L2	All MCs	59	1.8	59	1.8	0.471	9.4	LOSA	3.4	25.1	0.83	0.80	0.94	48.6
8	T1	All MCs	496	1.8	496	1.8	0.471	8.9	LOSA	3.4	25.1	0.83	0.82	0.95	51.5
9	R2	All MCs	126	1.8	126	1.8	0.471	15.1	LOS B	3.1	23.3	0.82	0.86	0.96	51.1
Appro	oach		681	1.8	681	1.8	0.471	10.1	LOS B	3.4	25.1	0.83	0.83	0.95	51.2
West	: Haym	nan Rd													
10	L2	All MCs	154	1.0	154	1.0	0.352	8.5	LOSA	2.0	15.0	0.65	0.66	0.65	55.0
11	T1	All MCs	346	1.0	346	1.0	0.642	9.2	LOSA	6.3	47.1	0.75	0.74	0.84	51.2
12	R2	All MCs	455	1.0	455	1.0	0.642	14.9	LOS B	6.3	47.1	0.80	0.79	0.95	51.8
Appro	oach		955	1.0	955	1.0	0.642	11.8	LOS B	6.3	47.1	0.76	0.75	0.86	52.2
All Ve	hicles		3252	2.0	3252	2.0	0.642	10.4	LOS B	6.3	47.1	0.78	0.82	0.91	51.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:10:00 PM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

▼ Site: 101-R [Hayman Rd / Kent St (Site Folder: 2029)

+DEV_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rmaı	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of ueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Kent	St													
1	L2	All MCs	263	2.1	263	2.1	0.211	5.7	LOSA	1.0	7.2	0.39	0.55	0.39	57.8
2	T1	All MCs	222	2.1	222	2.1	0.223	6.0	LOSA	1.0	7.6	0.40	0.55	0.40	53.8
3	R2	All MCs	32	2.1	32	2.1	0.223	11.6	LOS B	1.0	7.6	0.40	0.55	0.40	50.4
Appro	ach		517	2.1	517	2.1	0.223	6.2	LOSA	1.0	7.6	0.40	0.55	0.40	55.6
East:	Hayma	an Rd													
4	L2	All MCs	31	3.0	31	3.0	0.109	5.2	LOSA	0.5	3.5	0.47	0.52	0.47	51.1
5	T1	All MCs	166	3.0	166	3.0	0.109	5.2	LOSA	0.5	3.5	0.47	0.56	0.47	53.5
6	R2	All MCs	3	3.0	3	3.0	0.109	10.9	LOS B	0.4	3.4	0.48	0.60	0.48	48.0
6u	U	All MCs	25	3.0	25	3.0	0.109	13.2	LOS B	0.4	3.4	0.48	0.60	0.48	43.8
Appro	ach		225	3.0	225	3.0	0.109	6.2	LOSA	0.5	3.5	0.47	0.56	0.47	52.3
North	: Kent	St													
7	L2	All MCs	14	2.0	14	2.0	0.163	5.4	LOSA	8.0	5.7	0.46	0.49	0.46	50.8
8	T1	All MCs	238	2.0	238	2.0	0.163	5.1	LOSA	8.0	5.7	0.46	0.53	0.46	53.7
9	R2	All MCs	104	2.0	104	2.0	0.163	10.7	LOS B	0.7	5.6	0.47	0.63	0.47	52.8
Appro	ach		356	2.0	356	2.0	0.163	6.7	LOSA	8.0	5.7	0.47	0.56	0.47	53.3
West	Haym	an Rd													
10	L2	All MCs	88	1.1	88	1.1	0.143	6.5	LOSA	0.7	4.9	0.42	0.55	0.42	56.1
11	T1	All MCs	169	1.1	169	1.1	0.261	6.2	LOSA	1.4	10.4	0.43	0.60	0.43	53.3
12	R2	All MCs	205	1.1	205	1.1	0.261	11.6	LOS B	1.4	10.4	0.43	0.62	0.43	54.2
Appro	ach		463	1.1	463	1.1	0.261	8.7	LOSA	1.4	10.4	0.43	0.60	0.43	54.3
All Ve	hicles		1561	1.9	1561	1.9	0.261	7.0	LOSA	1.4	10.4	0.43	0.57	0.43	54.2

TOWN OF VICTORIA PARK

Received: 07/01/2025

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

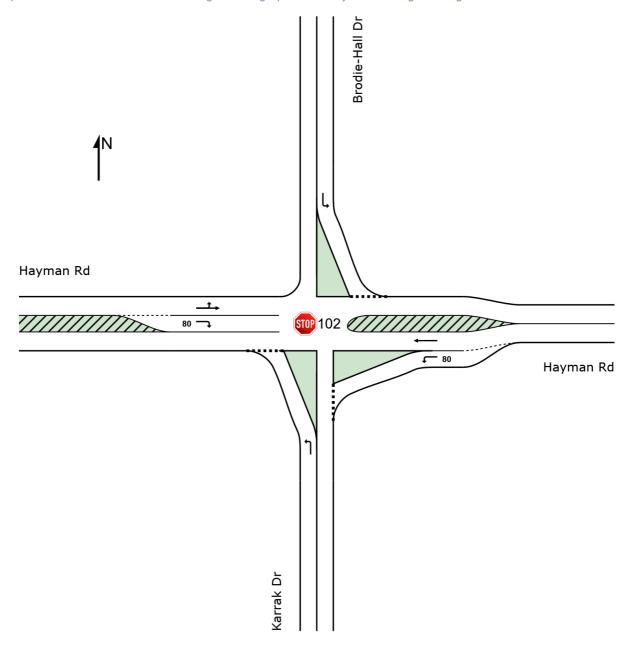
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:19:10 PM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

SITE LAYOUT


Site: 102 [Hayman Rd / Karrak Dr / Brodie-Hall Dr (Site Folder: 2029+DEV_AM)]

TOWN OF VICTORIA PARK Received: 07/01/2025

NA

Site Category: (None) Stop (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 10:58:25 AM
Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

o Site: 102 [Hayman Rd / Karrak Dr / Brodie-Hall Dr (Site

Folder: 2029+DEV AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Stop (Two-Way) TOWN OF VICTORIA PARK Received: 07/01/2025

		ovement													
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Karra	ak Dr													
1	L2	All MCs	25	5.3	25	5.3	0.026	6.5	LOSA	0.1	0.7	0.47	0.60	0.47	44.3
Appro	oach		25	5.3	25	5.3	0.026	6.5	LOSA	0.1	0.7	0.47	0.60	0.47	44.3
East:	Hayma	an Rd													
4	L2	All MCs	28	4.4	28	4.4	0.018	5.7	LOSA	0.1	0.5	0.09	0.52	0.09	47.4
5	T1	All MCs	479	4.4	479	4.4	0.244	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
Appro	oach		507	4.4	507	4.4	0.244	0.4	LOSA	0.1	0.5	0.01	0.03	0.01	58.6
North	: Brodi	e-Hall Dr													
7	L2	All MCs	13	5.3	13	5.3	0.016	7.6	LOSA	0.1	0.4	0.54	0.65	0.54	45.5
Appro	oach		13	5.3	13	5.3	0.016	7.6	LOSA	0.1	0.4	0.54	0.65	0.54	45.5
West	: Haym	an Rd													
10	L2	All MCs	62	3.9	62	3.9	0.355	5.6	LOSA	0.0	0.0	0.00	0.05	0.00	55.6
11	T1	All MCs	635	3.9	635	3.9	0.355	0.1	LOSA	0.0	0.0	0.00	0.05	0.00	58.9
12	R2	All MCs	31	3.9	31	3.9	0.029	7.5	LOSA	0.1	0.8	0.49	0.65	0.49	44.3
Appro	oach		727	3.9	727	3.9	0.355	8.0	NA	0.1	8.0	0.02	0.08	0.02	57.5
All Ve	hicles		1273	4.1	1273	4.1	0.355	0.8	NA	0.1	8.0	0.03	0.07	0.03	57.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:57:29 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: 102 [Hayman Rd / Karrak Dr / Brodie-Hall Dr (Site

Folder: 2029+DEV PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Stop (Two-Way) TOWN OF VICTORIA PARK Received: 07/01/2025

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of Jeue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	ı: Karra	ak Dr													
1	L2	All MCs	226	2.7	226	2.7	0.255	7.5	LOSA	1.1	7.6	0.57	0.74	0.58	43.9
Appro	ach		226	2.7	226	2.7	0.255	7.5	LOSA	1.1	7.6	0.57	0.74	0.58	43.9
East:	Hayma	an Rd													
4	L2	All MCs	112	3.3	112	3.3	0.076	6.0	LOSA	0.3	2.3	0.21	0.53	0.21	47.0
5	T1	All MCs	562	3.3	562	3.3	0.284	0.1	LOSA	0.0	0.0	0.00	0.00	0.00	59.8
Appro	ach		674	3.3	674	3.3	0.284	1.0	LOSA	0.3	2.3	0.04	0.09	0.04	56.3
North	: Brodi	e-Hall Dr													
7	L2	All MCs	189	2.7	189	2.7	0.186	6.6	LOSA	8.0	5.4	0.50	0.67	0.50	46.1
Appro	ach		189	2.7	189	2.7	0.186	6.6	LOSA	8.0	5.4	0.50	0.67	0.50	46.1
West	Haym	an Rd													
10	L2	All MCs	1	2.9	1	2.9	0.231	5.6	LOSA	0.0	0.0	0.00	0.00	0.00	56.3
11	T1	All MCs	457	2.9	457	2.9	0.231	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
12	R2	All MCs	112	2.9	112	2.9	0.117	8.1	LOSA	0.5	3.5	0.55	0.75	0.55	43.8
Appro	ach		569	2.9	569	2.9	0.231	1.6	NA	0.5	3.5	0.11	0.15	0.11	55.0
All Ve	hicles		1659	3.0	1659	3.0	0.284	2.8	NA	1.1	7.6	0.19	0.26	0.19	51.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:10:01 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

o Site: 102 [Hayman Rd / Karrak Dr / Brodie-Hall Dr (Site

Folder: 2029+DEV_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Stop (Two-Way) TOWN OF VICTORIA PARK Received: 07/01/2025

		ovement													
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	ı: Karra	ak Dr													
1	L2	All MCs	49	1.3	49	1.3	0.036	5.0	LOSA	0.1	1.0	0.26	0.49	0.26	45.3
Appro	ach		49	1.3	49	1.3	0.036	5.0	LOSA	0.1	1.0	0.26	0.49	0.26	45.3
East:	Hayma	an Rd													
4	L2	All MCs	25	3.0	25	3.0	0.016	5.7	LOSA	0.1	0.5	0.08	0.52	0.08	47.5
5	T1	All MCs	175	3.0	175	3.0	0.088	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
Appro	ach		200	3.0	200	3.0	0.088	0.7	LOSA	0.1	0.5	0.01	0.07	0.01	57.2
North	: Brodi	e-Hall Dr													
7	L2	All MCs	25	1.3	25	1.3	0.019	5.1	LOSA	0.1	0.5	0.29	0.49	0.29	46.8
Appro	ach		25	1.3	25	1.3	0.019	5.1	LOSA	0.1	0.5	0.29	0.49	0.29	46.8
West:	Haym	an Rd													
10	L2	All MCs	6	3.0	6	3.0	0.108	5.6	LOSA	0.0	0.0	0.00	0.02	0.00	56.2
11	T1	All MCs	207	3.0	207	3.0	0.108	0.0	LOSA	0.0	0.0	0.00	0.02	0.00	59.7
12	R2	All MCs	25	3.0	25	3.0	0.017	6.0	LOSA	0.1	0.5	0.28	0.55	0.28	45.0
Appro	ach		239	3.0	239	3.0	0.108	8.0	NA	0.1	0.5	0.03	0.07	0.03	57.1
All Ve	hicles		514	2.8	514	2.8	0.108	1.4	NA	0.1	1.0	0.06	0.13	0.06	54.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

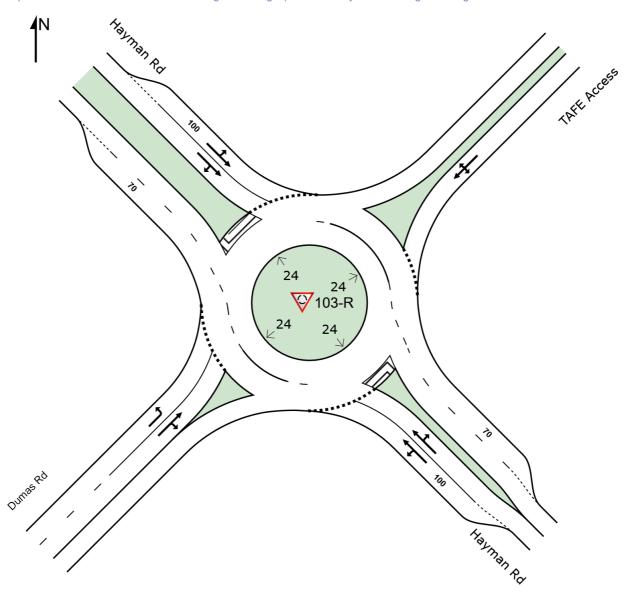
Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:19:11 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9


SITE LAYOUT

▼ Site: 103-R [Hayman Rd / Dumas Rd (Site Folder: 2029) +DEV_AM)]

TOWN OF VICTORIA PARK Received: 07/01/2025

Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 10:58:32 AM
Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

▼ Site: 103-R [Hayman Rd / Dumas Rd (Site Folder: 2029)

+DEV_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None)

Roundabout

		ovement													
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	East:	Hayman l	Rd												
4	L2	All MCs	2	3.0	2	3.0	0.169	4.2	LOSA	0.9	7.0	0.17	0.37	0.17	50.0
5	T1	All MCs	656	3.0	656	3.0	0.329	4.4	LOSA	2.2	16.4	0.18	0.41	0.18	52.7
6	R2	All MCs	112	3.0	112	3.0	0.329	9.1	LOSA	2.2	16.4	0.18	0.43	0.18	49.3
Appro	ach		769	3.0	769	3.0	0.329	5.1	LOSA	2.2	16.4	0.18	0.41	0.18	52.1
North	East: ⁻	TAFE Acc	ess												
7	L2	All MCs	19	0.0	19	0.0	0.041	5.2	LOSA	0.2	1.2	0.47	0.61	0.47	48.6
8	T1	All MCs	1	0.0	1	0.0	0.041	4.2	LOSA	0.2	1.2	0.47	0.61	0.47	44.2
9	R2	All MCs	17	0.0	17	0.0	0.041	9.2	LOSA	0.2	1.2	0.47	0.61	0.47	46.3
Appro	ach		37	0.0	37	0.0	0.041	7.0	LOSA	0.2	1.2	0.47	0.61	0.47	47.5
North	West:	Hayman	Rd												
10	L2	All MCs	67	4.4	67	4.4	0.143	4.7	LOSA	0.7	5.7	0.30	0.44	0.30	48.2
11	T1	All MCs	495	4.4	495	4.4	0.278	4.6	LOSA	1.7	13.0	0.30	0.42	0.30	51.7
12	R2	All MCs	24	4.4	24	4.4	0.278	9.4	LOS A	1.7	13.0	0.30	0.41	0.30	46.0
Appro	ach		586	4.4	586	4.4	0.278	4.8	LOSA	1.7	13.0	0.30	0.42	0.30	51.1
South	West:	Duams F	Rd												
1	L2	All MCs	24	31.3	24	31.3	0.030	6.8	LOSA	0.1	1.1	0.53	0.60	0.53	39.9
2	T1	All MCs	1;	31.3	1;	31.3	0.004	7.4	LOSA	0.0	0.1	0.56	0.60	0.56	41.9
3	R2	All MCs	1;	31.3	1;	31.3	0.004	12.5	LOS B	0.0	0.1	0.56	0.60	0.56	37.9
Appro	ach		26	31.3	26	31.3	0.030	7.1	LOSA	0.1	1.1	0.53	0.60	0.53	39.9
All Ve	hicles		1419	4.0	1419	4.0	0.329	5.1	LOSA	2.2	16.4	0.24	0.43	0.24	51.4

TOWN OF VICTORIA PARK

Received: 07/01/2025

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:57:30 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

▼ Site: 103-R [Hayman Rd / Dumas Rd (Site Folder: 2029)

+DEV_PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None)

Roundabout

TOWN OF VICTORIA PARK Received: 07/01/2025

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	nEast:	Hayman l	Rd												
4	L2	All MCs	1	2.7	1	2.7	0.099	4.2	LOSA	0.5	4.0	0.20	0.38	0.20	49.9
5	T1	All MCs	434	2.7	434	2.7	0.193	4.3	LOSA	1.1	8.6	0.20	0.37	0.20	53.1
6	R2	All MCs	1	2.7	1	2.7	0.193	9.1	LOSA	1.1	8.6	0.19	0.37	0.19	49.8
Appro	oach		436	2.7	436	2.7	0.193	4.3	LOSA	1.1	8.6	0.20	0.37	0.20	53.1
North	East: ⁻	TAFE Acc	ess												
7	L2	All MCs	28	0.0	28	0.0	0.077	6.3	LOSA	0.3	2.2	0.51	0.68	0.51	48.0
8	T1	All MCs	1	0.0	1	0.0	0.077	4.9	LOSA	0.3	2.2	0.51	0.68	0.51	43.6
9	R2	All MCs	36	0.0	36	0.0	0.077	9.9	LOSA	0.3	2.2	0.51	0.68	0.51	45.7
Appro	oach		65	0.0	65	0.0	0.077	8.2	LOSA	0.3	2.2	0.51	0.68	0.51	46.7
North	West:	Hayman	Rd												
10	L2	All MCs	1	3.3	1	3.3	0.149	4.0	LOSA	0.9	6.6	0.08	0.37	0.08	49.2
11	T1	All MCs	704	3.3	704	3.3	0.291	4.3	LOSA	2.0	15.2	0.08	0.37	0.08	53.3
12	R2	All MCs	20	3.3	20	3.3	0.291	9.0	LOSA	2.0	15.2	0.08	0.38	0.08	47.6
Appro	oach		725	3.3	725	3.3	0.291	4.4	LOSA	2.0	15.2	0.08	0.37	0.08	53.1
South	nWest:	Duams F	Rd												
1	L2	All MCs	81	11.7	81	11.7	0.076	5.1	LOSA	0.3	2.5	0.42	0.53	0.42	44.5
2	T1	All MCs	1	11.7	1	11.7	0.013	5.2	LOSA	0.0	0.4	0.47	0.63	0.47	42.4
3	R2	All MCs	7	11.7	7	11.7	0.013	10.2	LOS B	0.0	0.4	0.47	0.63	0.47	42.4
Appro	oach		89	11.7	89	11.7	0.076	5.5	LOSA	0.3	2.5	0.43	0.54	0.43	44.2
All Ve	hicles		1316	3.5	1316	3.5	0.291	4.6	LOSA	2.0	15.2	0.16	0.40	0.16	52.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:10:02 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

😽 Site: 103-R [Hayman Rd / Dumas Rd (Site Folder: 2029

+DEV_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None)

Roundabout

Mov	Turn	Mov	Dem	and	Ar	rival	Deg.	Aver.	Level of	95% Ba	ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class		ows		ows	Satn	Delay	Service	Que		Que	Stop	No. of	Speed
			[lotal veh/h		[Total veh/h	HV J %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	East:	Hayman		70	VO11/11	70	V / O	300		VOIT	- ''				KITI/TI
4	L2	All MCs	1	2.8	1	2.8	0.040	4.0	LOSA	0.2	1.5	0.04	0.37	0.04	50.8
5	T1	All MCs	193	2.8	193	2.8	0.078	3.9	LOSA	0.4	3.0	0.04	0.37	0.04	54.0
6	R2	All MCs	1	2.8	1	2.8	0.078	8.9	LOSA	0.4	3.0	0.04	0.37	0.04	50.5
Appro	ach		195	2.8	195	2.8	0.078	4.0	LOSA	0.4	3.0	0.04	0.37	0.04	54.0
North	East: ⁻	TAFE Acc	ess												
7	L2	All MCs	1	0.0	1	0.0	0.004	3.6	LOSA	0.0	0.1	0.29	0.49	0.29	48.9
8	T1	All MCs	1	0.0	1	0.0	0.004	3.2	LOSA	0.0	0.1	0.29	0.49	0.29	44.6
9	R2	All MCs	2	0.0	2	0.0	0.004	8.1	LOSA	0.0	0.1	0.29	0.49	0.29	46.7
Appro	ach		4	0.0	4	0.0	0.004	5.7	LOSA	0.0	0.1	0.29	0.49	0.29	46.8
North	West:	Hayman	Rd												
10	L2	All MCs	3	3.0	3	3.0	0.047	4.0	LOSA	0.2	1.7	0.03	0.38	0.03	49.4
11	T1	All MCs	223	3.0	223	3.0	0.091	3.9	LOSA	0.5	3.5	0.03	0.38	0.03	53.7
12	R2	All MCs	1	3.0	1	3.0	0.091	8.9	LOS A	0.5	3.5	0.03	0.37	0.03	48.1
Appro	ach		227	3.0	227	3.0	0.091	4.0	LOSA	0.5	3.5	0.03	0.38	0.03	53.6
South	West:	Duams F	Rd												
1	L2	All MCs	4	16.7	4	16.7	0.004	3.8	LOSA	0.0	0.1	0.26	0.40	0.26	44.0
2	T1	All MCs	1	16.7	1	16.7	0.002	3.4	LOSA	0.0	0.1	0.29	0.45	0.29	44.4
3	R2	All MCs	1	16.7	1	16.7	0.002	8.4	LOSA	0.0	0.1	0.29	0.45	0.29	43.2
Appro	ach		6	16.7	6	16.7	0.004	4.5	LOSA	0.0	0.1	0.27	0.42	0.27	43.9

TOWN OF VICTORIA PARK

Received: 07/01/2025

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

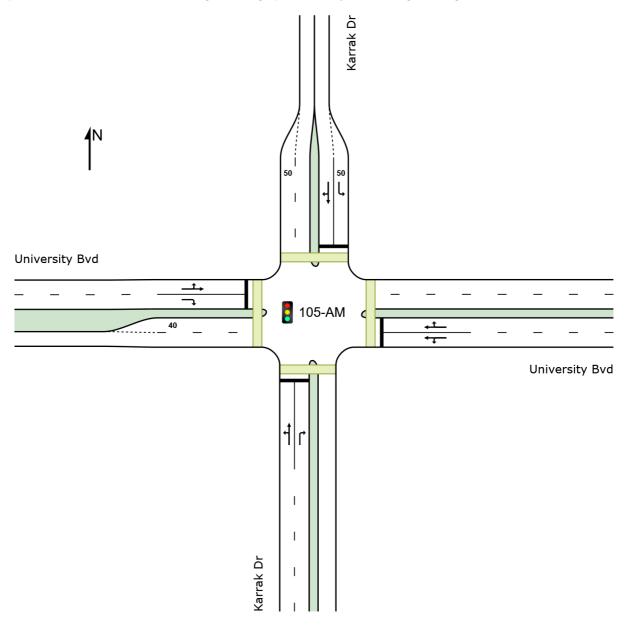
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:19:12 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

SITE LAYOUT

Site: 105-AM [University Bvd / Karrak Dr (Site Folder: 2029 +DEV_AM)]


TOWN OF VICTORIA PARK Received: 07/01/2025

Four-way intersection with 2-lane approaches (Signals)

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 10:58:44 AM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: 105-AM [University Bvd / Karrak Dr (Site Folder: 2029

+DEV_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Four-way intersection with 2-lane approaches (Signals)

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 79 seconds (Site User-Given Phase Times)

TOWN OF VICTORIA PARK

Received: 07/01/2025

Vehi	cle Mo	ovement	Performar	псе									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Karra	ak Dr											
1	L2	All MCs	34 5.3	34 5.3	0.227	38.5	LOS D	2.1	15.1	0.93	0.72	0.93	27.6
2	T1	All MCs	24 5.3	24 5.3	* 0.227	34.0	LOS C	2.1	15.1	0.93	0.72	0.93	33.4
3	R2	All MCs	31 ^{100.} 0	31 ^{100.} 0	0.202	40.2	LOS D	1.1	14.5	0.92	0.72	0.92	28.5
Appro	oach		88 38.0	88 38.0	0.227	37.8	LOS D	2.1	15.1	0.92	0.72	0.92	29.7
East:	Unive	rsity Bvd											
4	L2	All MCs	41 21.0	41 21.0	0.116	8.3	LOSA	1.9	15.9	0.50	0.51	0.50	41.0
5	T1	All MCs	65 21.0	65 21.0	0.116	12.2	LOS B	1.9	15.9	0.50	0.51	0.50	38.0
6	R2	All MCs	82 21.0	82 21.0	0.179	19.3	LOS B	2.0	16.1	0.64	0.70	0.64	36.7
Appro	oach		188 21.0	188 21.0	0.179	14.5	LOS B	2.0	16.1	0.56	0.59	0.56	38.0
North	: Karra	ak Dr											
7	L2	All MCs	14 5.3	14 5.3	* 0.046	35.1	LOS D	0.5	3.3	0.87	0.67	0.87	30.7
8	T1	All MCs	1 5.3	1 5.3	0.043	30.4	LOS C	0.4	3.1	0.87	0.66	0.87	34.0
9	R2	All MCs	12 5.3	12 5.3	0.043	35.2	LOS D	0.4	3.1	0.87	0.66	0.87	28.4
Appro			26 5.3	26 5.3	0.046	34.9	LOS C	0.5	3.3	0.87	0.67	0.87	29.9
West	: Unive	rsity Bvd											
10	L2	All MCs	134 20.7	134 20.7	0.302	16.0	LOS B	5.7	47.3	0.59	0.62	0.59	37.7
11	T1	All MCs	134 20.7	134 20.7	* 0.302	11.1	LOS B	5.7	47.3	0.59	0.62	0.59	35.8
12	R2	All MCs	37 20.7	37 20.7	0.061	15.4	LOS B	0.7	6.0	0.53	0.65	0.53	36.7
Appro	oach		304 20.7	304 20.7	0.302	13.8	LOS B	5.7	47.3	0.59	0.62	0.59	36.8
All Ve	hicles		607 22.6	607 22.6	0.302	18.4	LOS B	5.7	47.3	0.64	0.63	0.64	35.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Mov _	Input	Dem.	Aver.	Level of A	VERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist.	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Karrak	Dr										
P1 Full	50	53	14.0	LOS B	0.1	0.1	0.60	0.60	167.9	200.0	1.19
East: Universi	ty Bvd										

TOWN OF VICTORIA PARK Received: 07/01/2025

P2 Full	50	53	33.8	LOS D	0.1	0.1	0.93	0.93	187.6	200.0	1.07
North: Karra	ak Dr										
P3 Full	50	53	15.2	LOS B	0.1	0.1	0.62	0.62	169.1	200.0	1.18
West: Unive	ersity Bvd										
P4 Full	50	53	33.8	LOS D	0.1	0.1	0.93	0.93	187.6	200.0	1.07
All Pedestrians	200	211	24.2	LOSC	0.1	0.1	0.77	0.77	178.1	200.0	1.12

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:57:32 PM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: 105-PM [University Bvd / Karrak Dr (Site Folder: 2029

+DEV_PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Four-way intersection with 2-lane approaches (Signals)

Site Category: (None)

TOWN OF VICTORIA PARK

Received: 07/01/2025

Vehic	cle Mo	ovement	Performa	nce									
Mov	Turn	Mov	Demand	Arrival	Deg.	Aver.	Level of	95% Ba		Prop.	Eff.	Aver.	Aver.
ID		Class	Flows [Total HV]	Flows [Total HV]	Satn	Delay	Service	Que [Veh.	ue Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h %		v/c	sec		veh	m ¹			-,	km/h
South	ı: Karra	ak Dr											
1	L2	All MCs	42 2.7	42 2.7	0.127	24.2	LOS C	1.1	7.6	0.85	0.71	0.85	32.5
2	T1	All MCs	5 2.7	5 2.7	* 0.127	19.7	LOS B	1.1	7.6	0.85	0.71	0.85	37.8
3	R2	All MCs	22 ¹⁰⁰ . 0	22 100. 0	0.100	25.5	LOS C	0.5	6.6	0.84	0.69	0.84	33.3
Appro	oach		69 33.7	69 33.7	0.127	24.3	LOS C	1.1	7.6	0.85	0.70	0.85	33.3
East:	Unive	rsity Bvd											
4	L2	All MCs	47 9.9	47 9.9	0.388	8.9	LOSA	5.0	38.3	0.78	0.68	0.78	38.9
5	T1	All MCs	218 9.9	218 9.9	* 0.388	15.9	LOS B	5.0	38.3	0.78	0.68	0.78	34.7
6	R2	All MCs	36 9.9	36 9.9	0.114	19.9	LOS B	0.9	7.0	0.74	0.67	0.74	37.3
Appro	oach		301 9.9	301 9.9	0.388	15.3	LOS B	5.0	38.3	0.77	0.67	0.77	36.0
North	: Karra	ak Dr											
7	L2	All MCs	63 2.7	63 2.7	0.170	24.5	LOS C	1.4	10.2	0.86	0.73	0.86	34.5
8	T1	All MCs	4 2.7	4 2.7	* 0.416	21.2	LOS C	3.7	26.7	0.91	0.78	0.91	37.1
9	R2	All MCs	151 2.7	151 2.7	0.416	26.3	LOS C	3.7	26.7	0.91	0.78	0.91	31.8
Appro			218 2.7	218 2.7	0.416	25.6	LOS C	3.7	26.7	0.90	0.76	0.90	32.8
West:	Unive	ersity Bvd											
10	L2	All MCs	33 10.9	33 10.9	0.287	18.6	LOS B	3.5	27.1	0.76	0.65	0.76	37.0
11	T1	All MCs	149 10.9	149 10.9	0.287	13.9	LOS B	3.5	27.1	0.76	0.65	0.76	34.8
12	R2	All MCs	27 10.9	27 10.9	0.083	21.6	LOS C	0.6	4.4	0.79	0.69	0.79	33.6
Appro	oach		209 10.9	209 10.9	0.287	15.7	LOS B	3.5	27.1	0.76	0.65	0.76	35.0
All Ve	hicles		798 10.3	798 10.3	0.416	19.0	LOS B	5.0	38.3	0.81	0.70	0.81	34.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Mov	Input	Dem.	Aver.	Level of /	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist 1	Que	Stop Rate	Time		Speed
	ped/h	ped/h	sec		ped	m ¹			sec	m	m/sec
South: Karrak	Dr										
P1 Full	50	53	18.8	LOS B	0.1	0.1	0.84	0.84	172.6	200.0	1.16
East: Universi	ty Bvd										

TOWN OF VICTORIA PARK Received: 07/01/2025

P2 Full	50	53	21.4	LOS C	0.1	0.1	0.89	0.89	175.2	200.0	1.14
North: Karrak	Dr										
P3 Full	50	53	20.5	LOS C	0.1	0.1	0.87	0.87	174.3	200.0	1.15
West: Univers	sity Bvd										
P4 Full	50	53	21.4	LOS C	0.1	0.1	0.89	0.89	175.2	200.0	1.14
All Pedestrians	200	211	20.5	LOS C	0.1	0.1	0.87	0.87	174.4	200.0	1.15

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:10:04 PM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: 105-SAT [University Bvd / Karrak Dr (Site Folder: 2029

+DEV_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Four-way intersection with 2-lane approaches (Signals)

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site User-Given Phase Times)

TOWN OF VICTORIA PARK

Received: 07/01/2025

Vehic	cle Mo	ovement	Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows	Arrival Flows	Deg. Satn	Aver. Delav	Level of Service	95% Ba Que		Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
		Class	[Total HV]	[Total HV]			Service	[Veh.	Dist]	Que	Rate	Cycles	
South	ı: Karra	ak Dr	veh/h %	veh/h %	v/c	sec		veh	m				km/h
1		All MCs	14 1.3	14 1.3	0.078	37.9	LOS D	0.7	5.0	0.90	0.68	0.90	27.8
2		All MCs	6 1.3	6 1.3	* 0.078	33.3	LOS C	0.7	5.0	0.90	0.68	0.90	33.4
3		All MCs	400	8 100.	0.056	39.5	LOS D	0.7	3.9	0.90	0.67	0.90	28.7
3	R2	All MCS	0	0	0.056	39.5	LOS D	0.3	3.9	0.90	0.67	0.90	20.1
Appro	oach		28 30.6	28 30.6	0.078	37.3	LOS D	0.7	5.0	0.90	0.67	0.90	29.5
East:	Unive	rsity Bvd											
4	L2	All MCs	15 11.4	15 11.4	0.082	6.6	LOSA	1.4	10.9	0.44	0.41	0.44	42.7
5	T1	All MCs	73 11.4	73 11.4	0.082	8.2	LOSA	1.4	10.9	0.44	0.41	0.44	40.5
6	R2	All MCs	32 11.4	32 11.4	0.049	13.6	LOS B	0.6	4.4	0.48	0.63	0.48	39.6
Appro	oach		119 11.4	119 11.4	0.082	9.4	LOSA	1.4	10.9	0.45	0.47	0.45	40.5
North	: Karra	ak Dr											
7	L2	All MCs	9 1.3	9 1.3	0.041	38.6	LOS D	0.3	2.4	0.90	0.66	0.90	29.6
8	T1	All MCs	1 1.3	1 1.3	* 0.178	35.1	LOS D	1.5	10.6	0.93	0.72	0.93	32.5
9	R2	All MCs	40 1.3	40 1.3	0.178	39.8	LOS D	1.5	10.6	0.93	0.72	0.93	26.9
Appro	oach		51 1.3	51 1.3	0.178	39.5	LOS D	1.5	10.6	0.92	0.71	0.92	27.6
West	Unive	ersity Bvd											
10	L2	All MCs	114 9.7	114 9.7	0.170	12.8	LOS B	3.1	23.8	0.49	0.58	0.49	39.3
11	T1	All MCs	63 9.7	63 9.7	* 0.170	8.1	LOSA	3.1	23.8	0.49	0.58	0.49	37.7
12	R2	All MCs	15 9.7	15 9.7	0.020	12.4	LOS B	0.2	1.9	0.45	0.61	0.45	38.6
Appro	oach		192 9.7	192 9.7	0.170	11.2	LOS B	3.1	23.8	0.48	0.58	0.48	38.8
All Ve	hicles		389 10.7	389 10.7	0.178	16.2	LOS B	3.1	23.8	0.56	0.57	0.56	36.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian I	Input	Dem.	Aver.	· ·	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID Crossing		Flow	Delay	Service	QUE		Que	Stop Rate	Time		Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Karrak	Dr										
P1 Full	50	53	11.6	LOS B	0.1	0.1	0.54	0.54	165.4	200.0	1.21
East: Universi	ty Bvd										

TOWN OF VICTORIA PARK Received: 07/01/2025

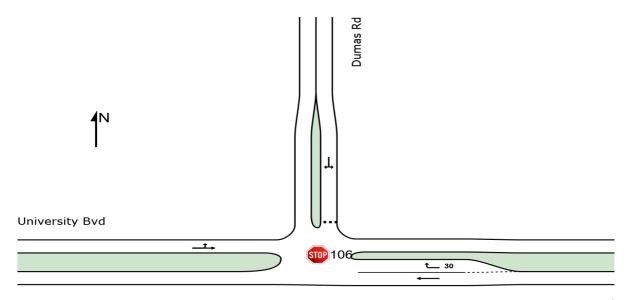
P2 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06
North: Karrak	Dr										
P3 Full	50	53	12.7	LOS B	0.1	0.1	0.56	0.56	166.5	200.0	1.20
West: Univers	ity Bvd										
P4 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06
All Pedestrians	200	211	23.2	LOSC	0.1	0.1	0.74	0.74	177.1	200.0	1.13

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:19:15 PM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9


SITE LAYOUT

5 Site: 106 [University Bvd / Dumas Rd (Site Folder: 2029) +DEV_AM)]

TOWN OF VICTORIA PARK Received: 07/01/2025

Site Category: (None) Stop (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

University Bvd

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 10:58:50 AM
Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

on Site: 106 [University Bvd / Dumas Rd (Site Folder: 2029)

+DEV_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Stop (Two-Way) TOWN OF VICTORIA PARK Received: 07/01/2025

Vehi	cle M	ovemen	t Performar	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Unive	rsity Bvd											
2	T1	All MCs	208 21.1	208 21.1	0.120	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	49.9
3	R2	All MCs	66 21.1	66 21.1	0.048	5.4	LOSA	0.2	1.8	0.28	0.52	0.28	43.4
Appro	oach		275 21.1	275 21.1	0.120	1.3	NA	0.2	1.8	0.07	0.13	0.07	48.3
North	: Dum	as Rd											
4	L2	All MCs	4 10.6	4 10.6	0.063	4.9	LOS A	0.2	1.8	0.45	0.61	0.45	46.0
6	R2	All MCs	40 10.6	40 10.6	0.063	7.8	LOS A	0.2	1.8	0.45	0.61	0.45	42.4
Appro	oach		44 10.6	44 10.6	0.063	7.6	LOSA	0.2	1.8	0.45	0.61	0.45	42.8
West	Unive	ersity Bvd											
7	L2	All MCs	62 24.4	62 24.4	0.085	4.8	LOSA	0.0	0.0	0.00	0.24	0.00	44.8
8	T1	All MCs	78 24.4	78 24.4	0.085	0.0	LOSA	0.0	0.0	0.00	0.24	0.00	48.3
Appro	oach		140 24.4	140 24.4	0.085	2.1	NA	0.0	0.0	0.00	0.24	0.00	47.0
All Ve	hicles		459 21.1	459 21.1	0.120	2.2	NA	0.2	1.8	0.08	0.21	0.08	47.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:57:32 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

on Site: 106 [University Bvd / Dumas Rd (Site Folder: 2029)

+DEV PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Stop (Two-Way) TOWN OF VICTORIA PARK Received: 07/01/2025

Vehi	cle M	ovemen	t Performar	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Unive	rsity Bvd											
2	T1	All MCs	272 10.0	272 10.0	0.147	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	49.9
3	R2	All MCs	42 10.0	42 10.0	0.030	5.3	LOSA	0.1	1.0	0.30	0.52	0.30	43.5
Appro	ach		314 10.0	314 10.0	0.147	8.0	NA	0.1	1.0	0.04	0.07	0.04	49.0
North	: Dum	as Rd											
4	L2	All MCs	26 9.4	26 9.4	0.084	5.1	LOS A	0.3	2.4	0.42	0.58	0.42	46.3
6	R2	All MCs	39 9.4	39 9.4	0.084	8.7	LOS A	0.3	2.4	0.42	0.58	0.42	42.7
Appro	ach		65 9.4	65 9.4	0.084	7.3	LOSA	0.3	2.4	0.42	0.58	0.42	44.4
West	Unive	ersity Bvd											
7	L2	All MCs	48 12.4	48 12.4	0.103	4.7	LOSA	0.0	0.0	0.00	0.14	0.00	46.0
8	T1	All MCs	136 12.4	136 12.4	0.103	0.0	LOS A	0.0	0.0	0.00	0.14	0.00	49.0
Appro	ach		184 12.4	184 12.4	0.103	1.2	NA	0.0	0.0	0.00	0.14	0.00	48.4
All Ve	hicles		563 10.7	563 10.7	0.147	1.7	NA	0.3	2.4	0.07	0.15	0.07	48.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:10:05 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

on Site: 106 [University Bvd / Dumas Rd (Site Folder: 2029)

+DEV_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Stop (Two-Way) TOWN OF VICTORIA PARK Received: 07/01/2025

Vehic	cle M	ovemen	t Performa	псе									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Unive	rsity Bvd											
2	T1	All MCs	89 10.9	89 10.9	0.049	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	50.0
3	R2	All MCs	7 10.9	7 10.9	0.005	4.8	LOS A	0.0	0.2	0.13	0.49	0.13	44.0
Appro	ach		97 10.9	97 10.9	0.049	0.4	NA	0.0	0.2	0.01	0.04	0.01	49.5
North	: Dum	as Rd											
4	L2	All MCs	3 8.6	3 8.6	0.016	4.8	LOSA	0.1	0.5	0.22	0.49	0.22	47.7
6	R2	All MCs	14 8.6	14 8.6	0.016	5.4	LOS A	0.1	0.5	0.22	0.49	0.22	44.4
Appro	ach		17 8.6	17 8.6	0.016	5.3	LOSA	0.1	0.5	0.22	0.49	0.22	45.2
West	Unive	ersity Bvd											
7	L2	All MCs	8 11.6	8 11.6	0.026	4.7	LOSA	0.0	0.0	0.00	0.10	0.00	46.5
8	T1	All MCs	38 11.6	38 11.6	0.026	0.0	LOS A	0.0	0.0	0.00	0.10	0.00	49.3
Appro	ach		46 11.6	46 11.6	0.026	0.9	NA	0.0	0.0	0.00	0.10	0.00	48.9
All Ve	hicles		160 10.9	160 10.9	0.049	1.0	NA	0.1	0.5	0.03	0.10	0.03	49.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

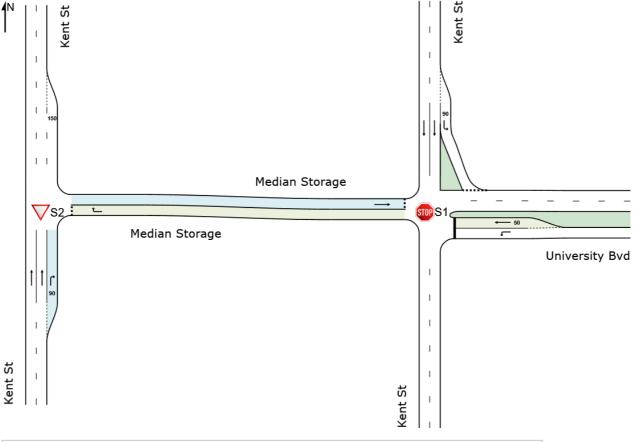
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:19:16 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

NETWORK LAYOUT


■■ Network: N101 [AM_Kent St / University Bvd (Network

Folder: 2029+DEV)]

New Network

Network Category: (None)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

TOWN OF VICTORIA PARK

Received: 07/01/2025

SITES IN N	NETWORK	
Site ID	CCG ID	Site Name
™ S1	NA	Kent St / University Bvd
∇S2	NA	Kent St / Univeristy Bvd

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 11:00:47 AM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: S1 [Kent St / University Bvd (Site Folder: 2029 +DEV_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK
Received: 07/01/2025
Network: N101 [AM_Kent
St / University Bvd (Network

Folder: 2029+DEV)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Stop (Two-Way)

Vehic	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back [Veh. veh	c Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Unive	rsity Bvd													
1 2	L2 T1	All MCs All MCs		22.8 22.8		22.8 22.8	0.077 0.125	10.4 16.8	LOS B LOS C	0.3 0.4	2.5 3.1	0.44 0.69	0.91 1.02	0.44 0.69	42.2 22.5
Appro	ach		108 2	22.8	108 2	22.8	0.125	13.0	LOS B	0.4	3.1	0.54	0.96	0.54	37.6
North	: Kent	St													
3	L2	All MCs	143	4.3	143	4.3	0.119	7.3	LOSA	0.5	3.6	0.28	0.58	0.28	47.4
4	T1	All MCs	687	4.3	687	4.3	0.181	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	69.9
Appro	ach		831	4.3	831	4.3	0.181	1.3	LOSA	0.5	3.6	0.05	0.10	0.05	66.4
West:	Medi	an Storag	je												
5	T1	All MCs	156	3.0	156	3.0	0.207	3.4	LOSA	8.0	5.4	0.56	0.54	0.56	30.6
Appro	ach		156	3.0	156	3.0	0.207	3.4	LOSA	8.0	5.4	0.56	0.54	0.56	30.6
All Ve	hicles		1095	5.9	1095	5.9	0.207	2.7	NA	0.8	5.4	0.17	0.25	0.17	60.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab)

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:22:17 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: S2 [Kent St / Univeristy Bvd (Site Folder: 2029)

+DEV_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK
Received: 07/01/2025

Network: N101 [AM_Kent
St / University Bvd (Network
Folder: 2029+DEV)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Give-Way (Two-Way)

Vehic	cle M	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl	and ows		rival lows	Deg. Satn	Aver. Delay	Level of Service	95% Back	Of Queue	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total I veh/h		[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	ı: Kent	St													
2	T1	All MCs	875	3.0	875	3.0	0.229	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	69.9
3	R2	All MCs	156	3.0	156	3.0	0.086	6.4	LOSA	0.0	0.0	0.00	0.66	0.00	56.4
Appro	oach		1031	3.0	1031	3.0	0.229	1.0	NA	0.0	0.0	0.00	0.10	0.00	68.3
East:	Media	n Storage	Э												
1	R2	All MCs	432	22.8	43	22.8	0.132	12.1	LOS B	0.4	3.5	0.73	0.79	0.73	32.1
Appro	oach		43 2	22.8	43	22.8	0.132	12.1	LOS B	0.4	3.5	0.73	0.79	0.73	32.1
All Ve	hicles		1074	3.8	1074	3.8	0.229	1.5	NA	0.4	3.5	0.03	0.13	0.03	66.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:22:17 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106 300304837 SIDRA.sip9

Site: S1 [Kent St / University Bvd (Site Folder: 2029 +DEV_PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK
Received: 07/01/2025
Network: N101 [PM_Kent
St / University Bvd (Network

Folder: 2029+DEV)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Stop (Two-Way)

Vehic	cle Mo	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows	Flo	rival ows	Deg. Satn	Aver. Delay	Level of Service		Of Queue	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			veh/h		[Total I veh/h	۷۷ J %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Unive	rsity Bvd													
1	L2	All MCs	276	15.9	276 1	15.9	0.387	13.0	LOS B	2.1	16.5	0.62	1.04	0.80	42.0
2	T1	All MCs	124	15.9	124 1	15.9	0.526	25.4	LOS D	1.8	14.0	0.86	1.13	1.26	17.0
Appro	ach		400	15.9	400 1	15.9	0.526	16.8	LOS C	2.1	16.5	0.69	1.07	0.94	36.6
North	: Kent	St													
3	L2	All MCs	125	2.7	125	2.7	0.094	6.9	LOSA	0.4	2.8	0.17	0.55	0.17	48.2
4	T1	All MCs	991	2.7	991	2.7	0.258	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	69.8
Appro	ach		1116	2.7	1116	2.7	0.258	8.0	LOSA	0.4	2.8	0.02	0.06	0.02	67.7
West:	Media	an Storag	je												
5	T1	All MCs	68	1.6	68	1.6	0.130	5.6	LOSA	0.4	3.1	0.67	0.67	0.67	27.7
Appro	ach		68	1.6	68	1.6	0.130	5.6	LOSA	0.4	3.1	0.67	0.67	0.67	27.7
All Ve	hicles		1584	6.0	1584	6.0	0.526	5.1	NA	2.1	16.5	0.22	0.34	0.28	58.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab)

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:22:20 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

V Site: S2 [Kent St / Univeristy Bvd (Site Folder: 2029

+DEV_PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK Received: 07/01/2025

Network: N101 [PM_Kent St / University Bvd (Network Folder: 2029+DEV)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Give-Way (Two-Way)

Vehic	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl	and ows		rival lows	Deg. Satn	Aver. Delay	Level of Service	95% Back	Of Queue	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total I veh/h		[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	: Kent	St													
2	T1	All MCs	712	1.6	712	1.6	0.184	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	69.9
3	R2	All MCs	68	1.6	68	1.6	0.037	6.4	LOSA	0.0	0.0	0.00	0.66	0.00	56.4
Appro	ach		780	1.6	780	1.6	0.184	0.6	NA	0.0	0.0	0.00	0.06	0.00	69.0
East:	Media	ın Storag	е												
1	R2	All MCs	124 1	15.9	124	15.9	0.260	8.8	LOSA	1.0	8.2	0.66	0.80	0.74	36.2
Appro	ach		124 ′	15.9	124	15.9	0.260	8.8	LOSA	1.0	8.2	0.66	0.80	0.74	36.2
All Ve	hicles		904	3.5	904	3.5	0.260	1.7	NA	1.0	8.2	0.09	0.16	0.10	65.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:22:20 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106 300304837 SIDRA.sip9

Site: S1 [Kent St / University Bvd (Site Folder: 2029 +DEV_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK Received: 07/01/2025

Network: N101 [SAT_Kent St / University Bvd (Network Folder: 2029+DEV)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Stop (Two-Way)

Vehic	cle M	ovemen	t Perform	ance									
Mov ID	Turn	Mov Class			Satn	Aver. Delay sec	Level of Service	95% Back [Veh. veh	COf Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Unive	rsity Bvd											
1 2	L2 T1	All MCs All MCs				9.5 12.0	LOS A LOS B	0.4 0.1	3.0 1.0	0.36 0.51	0.90 0.97	0.36 0.51	43.3 26.8
Appro	ach		115 20.4	115 20.4	0.092	10.0	LOSA	0.4	3.0	0.39	0.91	0.39	41.9
North	: Kent	St											
3	L2	All MCs				7.1	LOSA	0.1	0.6	0.25	0.55	0.25	47.8
4 Appro	T1 ach	All MCs	459 2.1 487 2.1	459 2. ² 487 2. ²		0.0	LOSA	0.0	0.0	0.00	0.00	0.00	69.9
West:	Media	an Storaç	ge										
5	T1	All MCs	146 1.6	146 1.6	0.148	1.8	LOSA	0.6	3.9	0.45	0.37	0.45	33.5
Appro	ach		146 1.6	146 1.6	0.148	1.8	LOSA	0.6	3.9	0.45	0.37	0.45	33.5
All Ve	hicles		748 4.8	748 4.8	0.148	2.2	NA	0.6	3.9	0.16	0.23	0.16	60.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab)

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:22:23 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

V Site: S2 [Kent St / Univeristy Bvd (Site Folder: 2029 +DEV_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK Received: 07/01/2025

Network: N101 [SAT_Kent St / University Bvd (Network Folder: 2029+DEV)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Give-Way (Two-Way)

Vehic	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Flo	and ows		rival ows	Deg. Satn	Aver. Delay	Level of Service	95% Back	Of Queue	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total I veh/h		[Total l veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	ı: Kent	St													
2	T1	All MCs	496	1.6	496	1.6	0.128	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	69.9
3	R2	All MCs	146	1.6	146	1.6	0.080	6.4	LOSA	0.0	0.0	0.00	0.66	0.00	56.4
Appro	oach		642	1.6	642	1.6	0.128	1.5	NA	0.0	0.0	0.00	0.15	0.00	67.5
East:	Media	n Storag	е												
1	R2	All MCs	22 2	20.4	22	20.4	0.034	4.8	LOSA	0.1	1.0	0.51	0.51	0.51	39.0
Appro	ach		22 2	20.4	22	20.4	0.034	4.8	LOSA	0.1	1.0	0.51	0.51	0.51	39.0
All Ve	hicles		664	2.3	664	2.3	0.128	1.6	NA	0.1	1.0	0.02	0.16	0.02	66.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

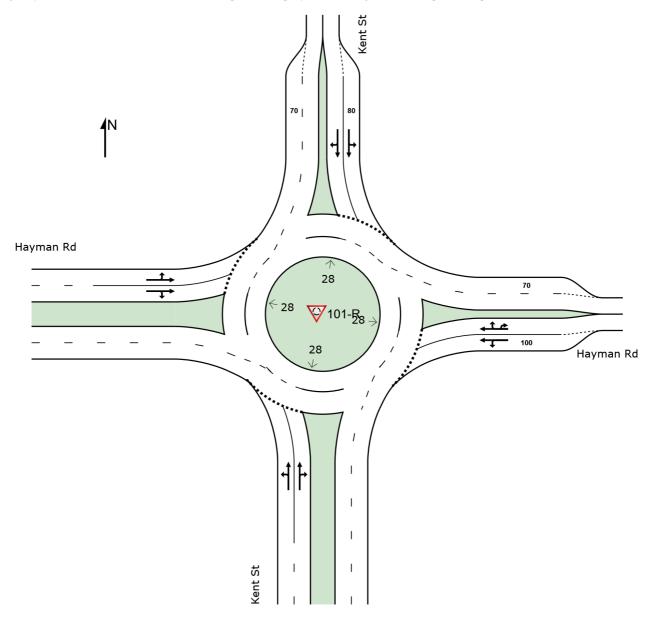
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:22:23 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106 300304837 SIDRA.sip9

SITE LAYOUT

♥ Site: 101-R [Hayman Rd / Kent St (Site Folder: 2039 +DEV_AM)]


TOWN OF VICTORIA PARK Received: 07/01/2025

NA

Site Category: (None)

Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 10:52:29 AM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: 101-R [Hayman Rd / Kent St (Site Folder: 2039

+DEV_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of tueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	ı: Kent	St													
1	L2	All MCs	523	4.4	523	4.4	0.529	7.8	LOSA	3.5	26.9	0.71	0.77	0.80	55.5
2	T1	All MCs	353	4.4	353	4.4	0.538	8.8	LOSA	3.5	26.7	0.72	0.80	0.85	51.0
3	R2	All MCs	99	4.4	99	4.4	0.538	14.4	LOS B	3.5	26.7	0.72	0.80	0.85	47.3
Appro	oach		975	4.4	975	4.4	0.538	8.9	LOSA	3.5	26.9	0.72	0.78	0.82	53.1
East:	Haym	an Rd													
4	L2	All MCs	63	3.8	63	3.8	0.385	7.3	LOSA	2.3	17.2	0.77	0.74	0.81	48.7
5	T1	All MCs	409	3.9	409	3.9	0.385	7.7	LOSA	2.3	17.2	0.77	0.77	0.81	51.4
6	R2	All MCs	67	3.9	67	3.9	0.385	13.8	LOS B	2.1	16.1	0.76	0.83	0.83	46.1
6u	U	All MCs	15	3.8	15	3.8	0.385	16.1	LOS B	2.1	16.1	0.76	0.83	0.83	41.5
Appro	oach		555	3.9	555	3.9	0.385	8.6	LOSA	2.3	17.2	0.77	0.78	0.82	50.2
North	: Kent	St													
7	L2	All MCs	76	2.9	76	2.9	0.599	13.8	LOS B	5.1	38.8	0.96	0.95	1.24	45.8
8	T1	All MCs	403	2.9	403	2.9	0.599	12.8	LOS B	5.1	38.8	0.95	0.96	1.23	48.4
9	R2	All MCs	179	2.9	179	2.9	0.599	19.6	LOS B	4.6	34.5	0.93	0.99	1.23	47.3
Appro	oach		658	2.9	658	2.9	0.599	14.7	LOS B	5.1	38.8	0.95	0.97	1.23	47.8
West	: Haym	an Rd													
10	L2	All MCs	192	1.8	192	1.8	0.485	10.2	LOS B	3.4	25.2	0.75	0.74	0.83	53.9
11	T1	All MCs	609	1.8	609	1.8	0.883	16.0	LOS B	17.2	129.1	0.93	1.02	1.47	46.0
12	R2	All MCs	445	1.8	445	1.8	0.883	23.5	LOS C	17.2	129.1	1.00	1.13	1.72	46.3
Appro	oach		1246	1.8	1246	1.8	0.883	17.8	LOS B	17.2	129.1	0.93	1.02	1.46	47.4
All Ve	hicles		3434	3.1	3434	3.1	0.883	13.2	LOS B	17.2	129.1	0.84	0.90	1.13	49.4

TOWN OF VICTORIA PARK

Received: 07/01/2025

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:03:42 PM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: 101-R [Hayman Rd / Kent St (Site Folder: 2039

+DEV_PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Site Category: (None)

Roundabout

Mov		vement Mov	Dem			rival	Deg.	Aver.	Level of	95% Ba	ack Of —	Prop.	Eff.	Aver.	Aver.
ID	Tuiti	Class	FI	ows HV]		ows	Satn v/c	Delay	Service	Que [Veh. veh		Que	Stop Rate	No. of Cycles	Speed km/h
South	: Kent	St													
1	L2	All MCs	512	2.6	512	2.6	0.596	8.9	LOSA	4.3	32.6	0.82	0.87	0.99	55.2
2	T1	All MCs	337	2.6	337	2.6	0.575	10.1	LOS B	3.8	28.6	0.81	0.88	0.99	51.2
3	R2	All MCs	62	2.6	62	2.6	0.575	15.7	LOS B	3.8	28.6	0.81	0.88	0.99	47.2
Appro	ach		911	2.6	911	2.6	0.596	9.8	LOS A	4.3	32.6	0.81	0.88	0.99	53.2
East:	Hayma	an Rd													
4	L2	All MCs	103	2.9	103	2.9	0.653	11.2	LOS B	5.4	40.8	0.89	0.97	1.23	46.2
5	T1	All MCs	619	2.9	619	2.9	0.653	11.8	LOS B	5.4	40.8	0.89	0.99	1.23	48.4
6	R2	All MCs	28	2.9	28	2.9	0.653	18.4	LOS B	4.8	36.6	0.88	1.02	1.24	42.8
6u	U	All MCs	117	2.9	117	2.9	0.653	20.7	LOS C	4.8	36.6	0.88	1.02	1.24	37.4
Appro	ach		867	2.9	867	2.9	0.653	13.2	LOS B	5.4	40.8	0.89	0.99	1.23	46.7
North:	Kent	St													
7	L2	All MCs	65	1.8	65	1.8	0.583	11.9	LOS B	4.9	36.8	0.91	0.91	1.16	47.0
8	T1	All MCs	545	1.8	545	1.8	0.583	11.4	LOS B	4.9	36.8	0.91	0.93	1.16	49.7
9	R2	All MCs	139	1.8	139	1.8	0.583	17.8	LOS B	4.4	33.2	0.90	0.95	1.17	49.2
Appro	ach		749	1.8	749	1.8	0.583	12.6	LOS B	4.9	36.8	0.91	0.93	1.16	49.4
West:	Haym	an Rd													
10	L2	All MCs	169	1.0	169	1.0	0.408	9.2	LOS A	2.5	18.6	0.71	0.70	0.72	54.6
11	T1	All MCs	381	1.0	381	1.0	0.744	11.1	LOS B	9.4	69.5	0.84	0.82	1.04	49.7
12	R2	All MCs	500	1.0	500	1.0	0.744	17.5	LOS B	9.4	69.5	0.91	0.89	1.22	50.0
Appro	ach		1051	1.0	1051	1.0	0.744	13.8	LOS B	9.4	69.5	0.85	0.83	1.07	50.7
	hicles				3578		0.744	12.4	LOS B	9.4	69.5	0.86	0.90	1.11	50.1

TOWN OF VICTORIA PARK

Received: 07/01/2025

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:03:48 PM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

▼ Site: 101-R [Hayman Rd / Kent St (Site Folder: 2039)

+DEV_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Site Category: (None)

Roundabout

TOWN OF VICTORIA PARK Received: 07/01/2025

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of ueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Kent	St													
1	L2	All MCs	289	2.1	289	2.1	0.236	5.8	LOSA	1.1	8.2	0.42	0.57	0.42	57.7
2	T1	All MCs	244	2.1	244	2.1	0.250	6.2	LOSA	1.2	8.7	0.43	0.56	0.43	53.6
3	R2	All MCs	35	2.1	35	2.1	0.250	11.7	LOS B	1.2	8.7	0.43	0.56	0.43	50.2
Appro	oach		568	2.1	568	2.1	0.250	6.3	LOSA	1.2	8.7	0.42	0.56	0.42	55.5
East:	Haym	an Rd													
4	L2	All MCs	34	3.0	34	3.0	0.123	5.3	LOSA	0.5	4.0	0.49	0.54	0.49	50.9
5	T1	All MCs	183	3.0	183	3.0	0.123	5.4	LOSA	0.5	4.0	0.50	0.57	0.50	53.4
6	R2	All MCs	3	3.0	3	3.0	0.123	11.1	LOS B	0.5	3.9	0.51	0.62	0.51	47.9
6u	U	All MCs	27	3.0	27	3.0	0.123	13.4	LOS B	0.5	3.9	0.51	0.62	0.51	43.7
Appro	oach		247	3.0	247	3.0	0.123	6.4	LOSA	0.5	4.0	0.50	0.57	0.50	52.1
North	: Kent	St													
7	L2	All MCs	15	2.0	15	2.0	0.183	5.6	LOSA	0.9	6.6	0.49	0.51	0.49	50.6
8	T1	All MCs	261	2.0	261	2.0	0.183	5.2	LOSA	0.9	6.6	0.49	0.55	0.49	53.6
9	R2	All MCs	114	2.0	114	2.0	0.183	10.9	LOS B	0.9	6.4	0.50	0.65	0.50	52.7
Appro	oach		389	2.0	389	2.0	0.183	6.9	LOSA	0.9	6.6	0.50	0.57	0.50	53.2
West	: Haym	an Rd													
10	L2	All MCs	97	1.1	97	1.1	0.161	6.7	LOSA	0.8	5.7	0.45	0.56	0.45	56.0
11	T1	All MCs	186	1.1	186	1.1	0.293	6.4	LOSA	1.6	12.2	0.46	0.61	0.46	53.2
12	R2	All MCs	226	1.1	226	1.1	0.293	11.8	LOS B	1.6	12.2	0.47	0.63	0.47	54.1
Appro	oach		509	1.1	509	1.1	0.293	8.8	LOSA	1.6	12.2	0.46	0.61	0.46	54.2
All Ve	hicles		1715	1.9	1715	1.9	0.293	7.2	LOSA	1.6	12.2	0.46	0.58	0.46	54.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

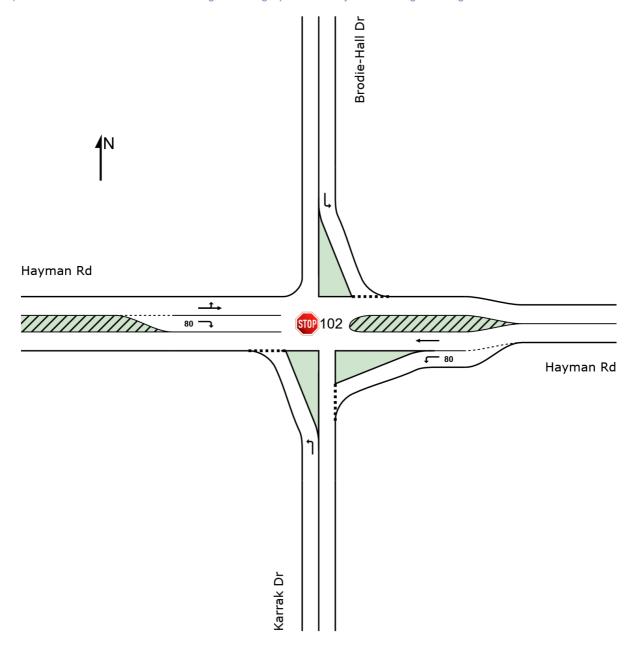
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:29:20 PM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

SITE LAYOUT


Site: 102 [Hayman Rd / Karrak Dr / Brodie-Hall Dr (Site Folder: 2039+DEV_AM)]

TOWN OF VICTORIA PARK Received: 07/01/2025

NA

Site Category: (None) Stop (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 10:52:36 AM
Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

o Site: 102 [Hayman Rd / Karrak Dr / Brodie-Hall Dr (Site

Folder: 2039+DEV AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Stop (Two-Way) TOWN OF VICTORIA PARK Received: 07/01/2025

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	ı: Karra	ak Dr													
1	L2	All MCs	28	5.3	28	5.3	0.031	6.8	LOSA	0.1	8.0	0.49	0.63	0.49	44.2
Appro	oach		28	5.3	28	5.3	0.031	6.8	LOSA	0.1	8.0	0.49	0.63	0.49	44.2
East:	Hayma	an Rd													
4	L2	All MCs	29	4.4	29	4.4	0.019	5.7	LOSA	0.1	0.5	0.10	0.52	0.10	47.4
5	T1	All MCs	526	4.4	526	4.4	0.268	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
Appro	oach		556	4.4	556	4.4	0.268	0.4	LOSA	0.1	0.5	0.01	0.03	0.01	58.6
North	: Brodi	e-Hall Dr													
7	L2	All MCs	14	5.3	14	5.3	0.020	8.1	LOSA	0.1	0.5	0.56	0.68	0.56	45.1
Appro	oach		14	5.3	14	5.3	0.020	8.1	LOSA	0.1	0.5	0.56	0.68	0.56	45.1
West	: Haym	an Rd													
10	L2	All MCs	68	3.9	68	3.9	0.390	5.6	LOSA	0.0	0.0	0.00	0.05	0.00	55.6
11	T1	All MCs	698	3.9	698	3.9	0.390	0.1	LOSA	0.0	0.0	0.00	0.05	0.00	58.9
12	R2	All MCs	32	3.9	32	3.9	0.032	7.8	LOSA	0.1	0.9	0.52	0.67	0.52	44.0
Appro	oach		798	3.9	798	3.9	0.390	8.0	NA	0.1	0.9	0.02	0.08	0.02	57.5
All Ve	hicles		1396	4.1	1396	4.1	0.390	0.8	NA	0.1	0.9	0.03	0.07	0.03	57.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:03:43 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

o Site: 102 [Hayman Rd / Karrak Dr / Brodie-Hall Dr (Site

Folder: 2039+DEV PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Stop (Two-Way) TOWN OF VICTORIA PARK Received: 07/01/2025

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of lueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	ı: Karra	ak Dr													
1	L2	All MCs	248	2.7	248	2.7	0.303	8.3	LOSA	1.4	9.8	0.60	0.81	0.69	43.3
Appro	ach		248	2.7	248	2.7	0.303	8.3	LOSA	1.4	9.8	0.60	0.81	0.69	43.3
East:	Hayma	an Rd													
4	L2	All MCs	122	3.3	122	3.3	0.084	6.0	LOSA	0.3	2.5	0.22	0.53	0.22	47.0
5	T1	All MCs	618	3.3	618	3.3	0.312	0.1	LOSA	0.0	0.0	0.00	0.00	0.00	59.8
Appro	ach		740	3.3	740	3.3	0.312	1.0	LOS A	0.3	2.5	0.04	0.09	0.04	56.3
North	: Brodi	ie-Hall Dr													
7	L2	All MCs	208	2.7	208	2.7	0.217	6.9	LOSA	0.9	6.3	0.53	0.70	0.53	46.0
Appro	ach		208	2.7	208	2.7	0.217	6.9	LOSA	0.9	6.3	0.53	0.70	0.53	46.0
West:	Haym	an Rd													
10	L2	All MCs	1	2.9	1	2.9	0.254	5.6	LOSA	0.0	0.0	0.00	0.00	0.00	56.3
11	T1	All MCs	502	2.9	502	2.9	0.254	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
12	R2	All MCs	122	2.9	122	2.9	0.138	8.6	LOSA	0.6	4.1	0.58	0.78	0.58	43.4
Appro	ach		625	2.9	625	2.9	0.254	1.7	NA	0.6	4.1	0.11	0.15	0.11	54.9
All Ve	hicles		1822	3.0	1822	3.0	0.312	2.9	NA	1.4	9.8	0.20	0.28	0.21	51.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:03:48 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

o Site: 102 [Hayman Rd / Karrak Dr / Brodie-Hall Dr (Site

Folder: 2039+DEV_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Stop (Two-Way) TOWN OF VICTORIA PARK Received: 07/01/2025

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Karra	ak Dr													
1	L2	All MCs	55	1.3	55	1.3	0.040	5.1	LOSA	0.2	1.1	0.28	0.50	0.28	45.3
Appro	ach		55	1.3	55	1.3	0.040	5.1	LOSA	0.2	1.1	0.28	0.50	0.28	45.3
East:	Hayma	an Rd													
4	L2	All MCs	27	3.0	27	3.0	0.017	5.7	LOSA	0.1	0.5	0.09	0.52	0.09	47.4
5	T1	All MCs	193	3.0	193	3.0	0.097	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
Appro	ach		220	3.0	220	3.0	0.097	0.7	LOSA	0.1	0.5	0.01	0.06	0.01	57.3
North	: Brodi	e-Hall Dr													
7	L2	All MCs	27	1.3	27	1.3	0.021	5.2	LOSA	0.1	0.6	0.31	0.50	0.31	46.8
Appro	ach		27	1.3	27	1.3	0.021	5.2	LOSA	0.1	0.6	0.31	0.50	0.31	46.8
West:	Haym	an Rd													
10	L2	All MCs	7	3.0	7	3.0	0.119	5.6	LOSA	0.0	0.0	0.00	0.02	0.00	56.1
11	T1	All MCs	228	3.0	228	3.0	0.119	0.0	LOSA	0.0	0.0	0.00	0.02	0.00	59.6
12	R2	All MCs	27	3.0	27	3.0	0.018	6.1	LOSA	0.1	0.6	0.30	0.55	0.30	44.9
Appro	ach		263	3.0	263	3.0	0.119	8.0	NA	0.1	0.6	0.03	0.07	0.03	57.1
All Ve	hicles		565	2.8	565	2.8	0.119	1.4	NA	0.2	1.1	0.06	0.13	0.06	54.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

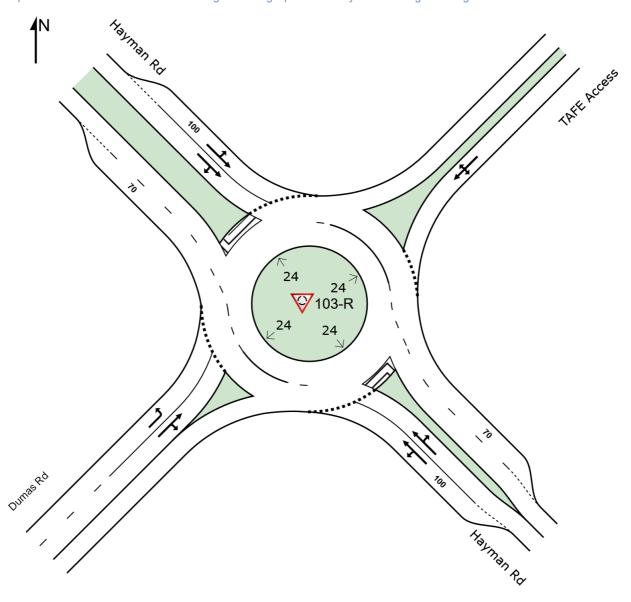
Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:29:20 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9


SITE LAYOUT

▼ Site: 103-R [Hayman Rd / Dumas Rd (Site Folder: 2039) +DEV_AM)]

TOWN OF VICTORIA PARK Received: 07/01/2025

Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 10:52:49 AM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

▼ Site: 103-R [Hayman Rd / Dumas Rd (Site Folder: 2039)

+DEV_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfor	mar	псе									
Mov ID	Turn	Mov Class		ows IV]	Arriv Flov [Total H\ veh/h	vs Satr	n Delay	Level of Service		Back Of ueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	nEast:	Hayman l	Rd											
4	L2	All MCs	2	3.0	2 3	.0 0.187	4.2	LOSA	1.0	7.8	0.19	0.37	0.19	49.9
5	T1	All MCs	720	3.0	720 3	.0 0.364	4.5	LOSA	2.5	18.9	0.19	0.41	0.19	52.6
6	R2	All MCs	123	3.0	123 3	.0 0.364	9.1	LOSA	2.5	18.9	0.20	0.43	0.20	49.3
Appro	oach		845	3.0	845 3	.0 0.364	5.2	LOSA	2.5	18.9	0.19	0.41	0.19	52.0
North	East: ⁻	TAFE Acc	ess											
7	L2	All MCs	21	0.0	21 0	.0 0.046	5.5	LOSA	0.2	1.4	0.49	0.63	0.49	48.5
8	T1	All MCs	1	0.0	1 0	.0 0.046	6 4.4	LOSA	0.2	1.4	0.49	0.63	0.49	44.1
9	R2	All MCs	18	0.0	18 0	.0 0.046	9.4	LOSA	0.2	1.4	0.49	0.63	0.49	46.2
Appro	oach		40	0.0	40 0	.0 0.046	7.2	LOSA	0.2	1.4	0.49	0.63	0.49	47.4
North	West:	Hayman	Rd											
10	L2	All MCs	74	4.4	74 4	.4 0.159	4.7	LOSA	0.8	6.5	0.32	0.45	0.32	48.1
11	T1	All MCs	544	4.4	544 4	.4 0.310	4.7	LOSA	2.0	15.0	0.32	0.43	0.32	51.6
12	R2	All MCs	27	4.4	27 4	.4 0.310	9.5	LOSA	2.0	15.0	0.32	0.42	0.32	45.8
Appro	oach		645	4.4	645 4	.4 0.310	4.9	LOSA	2.0	15.0	0.32	0.43	0.32	51.0
South	nWest:	Duams F	₹d											
1	L2	All MCs	27 3	31.3	27 31	.3 0.035	7.3	LOSA	0.1	1.3	0.55	0.62	0.55	39.7
2	T1	All MCs	1 3	31.3	1 31	.3 0.005	7.8	LOSA	0.0	0.2	0.58	0.62	0.58	41.7
3	R2	All MCs	1 3	31.3	1 31	.3 0.005	12.9	LOS B	0.0	0.2	0.58	0.62	0.58	37.7
Appro	oach		29 3	31.3	29 31	.3 0.035	7.5	LOSA	0.1	1.3	0.55	0.62	0.55	39.7
All Ve	hicles		1560	4.0	1560 4	.0 0.364	5.2	LOSA	2.5	18.9	0.26	0.43	0.26	51.2

TOWN OF VICTORIA PARK

Received: 07/01/2025

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:03:43 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

▼ Site: 103-R [Hayman Rd / Dumas Rd (Site Folder: 2039)

+DEV_PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None)

Roundabout

Vehic		ovement													
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	East:	Hayman l	Rd												
4	L2	All MCs	1	2.7	1	2.7	0.110	4.3	LOSA	0.6	4.4	0.21	0.38	0.21	49.8
5	T1	All MCs	477	2.7	477	2.7	0.214	4.4	LOSA	1.3	9.8	0.21	0.38	0.21	53.1
6	R2	All MCs	1	2.7	1	2.7	0.214	9.2	LOS A	1.3	9.8	0.21	0.37	0.21	49.8
Appro	ach		479	2.7	479	2.7	0.214	4.4	LOSA	1.3	9.8	0.21	0.38	0.21	53.0
North	East: 1	TAFE Acc	ess												
7	L2	All MCs	31	0.0	31	0.0	0.086	6.8	LOSA	0.3	2.5	0.54	0.70	0.54	47.8
8	T1	All MCs	1	0.0	1	0.0	0.086	5.2	LOSA	0.3	2.5	0.54	0.70	0.54	43.4
9	R2	All MCs	39	0.0	39	0.0	0.086	10.1	LOS B	0.3	2.5	0.54	0.70	0.54	45.5
Appro	ach		71	0.0	71	0.0	0.086	8.6	LOSA	0.3	2.5	0.54	0.70	0.54	46.5
North	West:	Hayman	Rd												
10	L2	All MCs	1	3.3	1	3.3	0.165	4.0	LOSA	1.0	7.4	0.08	0.37	0.08	49.1
11	T1	All MCs	775	3.3	775	3.3	0.321	4.3	LOSA	2.3	17.6	0.09	0.37	0.09	53.2
12	R2	All MCs	22	3.3	22	3.3	0.321	9.0	LOSA	2.3	17.6	0.09	0.38	0.09	47.5
Appro	ach		798	3.3	798	3.3	0.321	4.4	LOSA	2.3	17.6	0.09	0.37	0.09	53.1
South	West:	Duams F	Rd												
1	L2	All MCs	89	11.7	89	11.7	0.086	5.4	LOSA	0.3	2.8	0.45	0.54	0.45	44.3
2	T1	All MCs	1	11.7	1	11.7	0.015	5.4	LOSA	0.1	0.4	0.49	0.65	0.49	42.2
3	R2	All MCs	8	11.7	8	11.7	0.015	10.4	LOS B	0.1	0.4	0.49	0.65	0.49	42.2
Appro	ach		99	11.7	99	11.7	0.086	5.8	LOSA	0.3	2.8	0.45	0.55	0.45	44.1
All Ve	hicles		1446	3.5	1446	3.5	0.321	4.7	LOSA	2.3	17.6	0.17	0.40	0.17	52.2

TOWN OF VICTORIA PARK

Received: 07/01/2025

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 6:02:58 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

😽 Site: 103-R [Hayman Rd / Dumas Rd (Site Folder: 2039

+DEV_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of Jueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	East:	Hayman I	Rd												
4	L2	All MCs	1	2.8	1	2.8	0.044	4.0	LOSA	0.2	1.7	0.04	0.37	0.04	50.8
5	T1	All MCs	213	2.8	213	2.8	0.086	3.9	LOSA	0.4	3.4	0.04	0.37	0.04	54.0
6	R2	All MCs	1	2.8	1	2.8	0.086	8.9	LOSA	0.4	3.4	0.04	0.37	0.04	50.5
Appro	ach		215	2.8	215	2.8	0.086	4.0	LOSA	0.4	3.4	0.04	0.37	0.04	54.0
North	East: ⁻	TAFE Acc	ess												
7	L2	All MCs	1	0.0	1	0.0	0.004	3.7	LOSA	0.0	0.1	0.30	0.49	0.30	48.9
8	T1	All MCs	1	0.0	1	0.0	0.004	3.2	LOSA	0.0	0.1	0.30	0.49	0.30	44.6
9	R2	All MCs	2	0.0	2	0.0	0.004	8.2	LOSA	0.0	0.1	0.30	0.49	0.30	46.6
Appro	ach		4	0.0	4	0.0	0.004	5.8	LOSA	0.0	0.1	0.30	0.49	0.30	46.8
North	West:	Hayman	Rd												
10	L2	All MCs	3	3.0	3	3.0	0.051	4.0	LOSA	0.3	1.9	0.03	0.38	0.03	49.4
11	T1	All MCs	246	3.0	246	3.0	0.100	4.0	LOSA	0.5	4.0	0.03	0.37	0.03	53.7
12	R2	All MCs	1	3.0	1	3.0	0.100	8.9	LOSA	0.5	4.0	0.03	0.37	0.03	48.1
Appro	ach		251	3.0	251	3.0	0.100	4.0	LOSA	0.5	4.0	0.03	0.37	0.03	53.6
South	West:	Duams F	Rd												
1	L2	All MCs	5	16.7	5	16.7	0.004	3.9	LOSA	0.0	0.1	0.28	0.40	0.28	44.0
2	T1	All MCs	1	16.7	1	16.7	0.002	3.6	LOSA	0.0	0.1	0.31	0.46	0.31	44.3
3	R2	All MCs	1	16.7	1	16.7	0.002	8.6	LOSA	0.0	0.1	0.31	0.46	0.31	43.1
Appro	ach		7	16.7	7	16.7	0.004	4.5	LOSA	0.0	0.1	0.29	0.42	0.29	43.9
All Ve	hicles		477	3.1	477	3.1	0.100	4.0	LOSA	0.5	4.0	0.04	0.38	0.04	53.6

TOWN OF VICTORIA PARK

Received: 07/01/2025

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

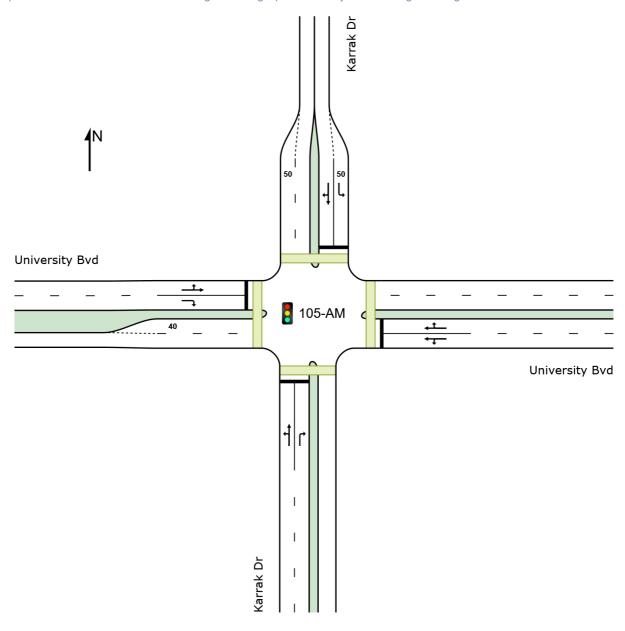
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:29:21 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

SITE LAYOUT

Site: 105-AM [University Bvd / Karrak Dr (Site Folder: 2039 +DEV_AM)]


TOWN OF VICTORIA PARK Received: 07/01/2025

Four-way intersection with 2-lane approaches (Signals)

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 10:52:58 AM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: 105-PM [University Bvd / Karrak Dr (Site Folder: 2039

+DEV_PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Four-way intersection with 2-lane approaches (Signals)

Site Category: (None)

TOWN OF VICTORIA PARK

Received: 07/01/2025

Vehic	cle Mo	ovement	Performa	nce						_		_	
Mov ID	Turn	Mov Class	Demand Flows	Arrival Flows	Deg. Satn	Aver. Delav	Level of Service	95% Ba Que		Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
שו		Class	[Total HV]			Delay	Service	[Veh.	Dist]	Que	Rate	Cycles	Speed
0 11	14		veh/h %	veh/h %	v/c	sec		veh	m				km/h
	ı: Karra												
1		All MCs	46 2.7	46 2.7	0.141	24.3	LOS C	1.2	8.5	0.85	0.71	0.85	32.5
2	T1	All MCs	6 2.7	6 2.7	* 0.141	19.8	LOS B	1.2	8.5	0.85	0.71	0.85	37.8
3	R2	All MCs	24 ¹⁰⁰ . 0	24 ^{100.} 0	0.110	25.6	LOS C	0.6	7.2	0.84	0.70	0.84	33.2
Appro	oach		77 33.3	77 33.3	0.141	24.3	LOS C	1.2	8.5	0.85	0.71	0.85	33.3
East:	Unive	rsity Bvd											
4	L2	All MCs	53 9.9	53 9.9	0.430	9.0	LOSA	5.7	43.3	0.79	0.69	0.79	38.8
5	T1	All MCs	240 9.9	240 9.9	* 0.430	16.2	LOS B	5.7	43.3	0.79	0.69	0.79	34.5
6	R2	All MCs	39 9.9	39 9.9	0.126	20.9	LOS C	1.0	7.7	0.76	0.68	0.76	36.9
Appro	oach		332 9.9	332 9.9	0.430	15.6	LOS B	5.7	43.3	0.79	0.69	0.79	35.8
North	: Karra	ak Dr											
7	L2	All MCs	69 2.7	69 2.7	0.187	24.6	LOS C	1.6	11.3	0.86	0.73	0.86	34.5
8	T1	All MCs	5 2.7	5 2.7	* 0.459	21.4	LOS C	4.2	29.8	0.92	0.78	0.92	37.0
9	R2	All MCs	165 2.7	165 2.7	0.459	26.6	LOS C	4.2	29.8	0.92	0.78	0.92	31.7
Appro			240 2.7	240 2.7	0.459	25.9	LOS C	4.2	29.8	0.91	0.77	0.91	32.7
West:	Unive	ersity Bvd											
10	L2	All MCs	36 10.9	36 10.9	0.315	18.8	LOS B	3.9	30.2	0.77	0.66	0.77	36.9
11	T1	All MCs	164 10.9	164 10.9	0.315	14.1	LOS B	3.9	30.2	0.77	0.66	0.77	34.7
12	R2	All MCs	31 10.9	31 10.9	0.099	22.6	LOS C	0.7	5.0	0.81	0.70	0.81	33.2
Appro	oach		231 10.9	231 10.9	0.315	15.9	LOS B	3.9	30.2	0.78	0.66	0.78	34.8
All Ve	hicles		879 10.3	879 10.3	0.459	19.3	LOS B	5.7	43.3	0.82	0.71	0.82	34.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist 1	Que	Stop Rate	Time		Speed
	ped/h	ped/h	sec		ped	m ¹			sec	m	m/sec
South: Karrak	Dr										
P1 Full	50	53	18.8	LOS B	0.1	0.1	0.84	0.84	172.6	200.0	1.16
East: Universi	ty Bvd										

TOWN OF VICTORIA PARK Received: 07/01/2025

P2 Full	50	53	21.4	LOS C	0.1	0.1	0.89	0.89	175.2	200.0	1.14
North: Karrak	Dr										
P3 Full	50	53	20.5	LOS C	0.1	0.1	0.87	0.87	174.3	200.0	1.15
West: Univers	sity Bvd										
P4 Full	50	53	21.4	LOS C	0.1	0.1	0.89	0.89	175.2	200.0	1.14
All Pedestrians	200	211	20.5	LOS C	0.1	0.1	0.87	0.87	174.4	200.0	1.15

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:03:50 PM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: 105-SAT [University Bvd / Karrak Dr (Site Folder: 2039

+DEV_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Four-way intersection with 2-lane approaches (Signals)

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site User-Given Phase Times)

TOWN OF VICTORIA PARK

Received: 07/01/2025

Vehi	cle Mo	ovement	Performa	псе									
Mov ID	Turn	Mov Class	Demand Flows	Arrival Flows	Deg. Satn	Aver. Delay	Level of Service	95% Ba Que	ue	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total HV] veh/h %		v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Karra	ak Dr											
1	L2	All MCs	15 1.3	15 1.3	0.086	37.9	LOS D	8.0	5.5	0.90	0.68	0.90	27.8
2	T1	All MCs	7 1.3	7 1.3	* 0.086	33.4	LOS C	8.0	5.5	0.90	0.68	0.90	33.4
3	R2	All MCs	9 100. 0	9 100. 0	0.064	39.5	LOS D	0.3	4.4	0.90	0.67	0.90	28.7
Appro	oach		32 30.9	32 30.9	0.086	37.4	LOS D	8.0	5.5	0.90	0.68	0.90	29.6
East:	Unive	rsity Bvd											
4	L2	All MCs	16 11.4	16 11.4	0.090	6.6	LOSA	1.6	12.0	0.45	0.41	0.45	42.7
5	T1	All MCs	80 11.4	80 11.4	0.090	8.2	LOSA	1.6	12.0	0.45	0.41	0.45	40.5
6	R2	All MCs	35 11.4	35 11.4	0.056	14.1	LOS B	0.6	5.0	0.50	0.64	0.50	39.3
Appro	oach		131 11.4	131 11.4	0.090	9.6	LOSA	1.6	12.0	0.46	0.47	0.46	40.4
North	: Karra	ak Dr											
7	L2	All MCs	11 1.3	11 1.3	0.046	38.6	LOS D	0.4	2.6	0.91	0.67	0.91	29.6
8	T1	All MCs	1 1.3	1 1.3	* 0.197	35.2	LOS D	1.7	11.7	0.93	0.73	0.93	32.4
9	R2	All MCs	44 1.3	44 1.3	0.197	39.9	LOS D	1.7	11.7	0.93	0.73	0.93	26.9
Appro	oach		56 1.3	56 1.3	0.197	39.6	LOS D	1.7	11.7	0.93	0.72	0.93	27.5
West	: Unive	rsity Bvd											
10	L2	All MCs	125 9.7	125 9.7	0.187	12.9	LOS B	3.5	26.5	0.49	0.59	0.49	39.2
11	T1	All MCs	69 9.7	69 9.7	* 0.187	8.2	LOSA	3.5	26.5	0.49	0.59	0.49	37.6
12	R2	All MCs	16 9.7	16 9.7	0.022	12.4	LOS B	0.3	2.0	0.45	0.61	0.45	38.6
Appro	oach		211 9.7	211 9.7	0.187	11.3	LOS B	3.5	26.5	0.49	0.59	0.49	38.7
All Ve	hicles		428 10.7	428 10.7	0.197	16.4	LOS B	3.5	26.5	0.57	0.58	0.57	36.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian I	Input	Dem.	Aver.	· ·	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID Crossing		Flow	Delay	Service	QUE		Que	Stop Rate	Time		Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Karrak	Dr										
P1 Full	50	53	11.6	LOS B	0.1	0.1	0.54	0.54	165.4	200.0	1.21
East: Universi	ty Bvd										

TOWN OF VICTORIA PARK Received: 07/01/2025

P2 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06
North: Karrak	Dr										
P3 Full	50	53	12.7	LOS B	0.1	0.1	0.56	0.56	166.5	200.0	1.20
West: Univers	sity Bvd										
P4 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06
All Pedestrians	200	211	23.2	LOS C	0.1	0.1	0.74	0.74	177.1	200.0	1.13

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:29:22 PM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: 105-AM [University Bvd / Karrak Dr (Site Folder: 2039

+DEV_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Four-way intersection with 2-lane approaches (Signals)

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 79 seconds (Site User-Given Phase Times)

TOWN OF VICTORIA PARK

Received: 07/01/2025

Vehi	cle Mo	ovement	t Performai	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Karra	ak Dr	VC11/11 /0	VC11/11 /0	V/C	300		VCII	- ''				IXIII/II
1	L2	All MCs	37 5.3	37 5.3	0.248	38.6	LOS D	2.3	16.5	0.93	0.73	0.93	27.6
2	T1	All MCs	26 5.3	26 5.3	* 0.248	34.2	LOS C	2.3	16.5	0.93	0.73	0.93	33.3
3	R2	All MCs	34 ^{100.} 0	34 ^{100.} 0	0.223	40.3	LOS D	1.2	16.1	0.92	0.73	0.92	28.5
Appro	oach		97 38.3	97 38.3	0.248	38.0	LOS D	2.3	16.5	0.93	0.73	0.93	29.6
East:	Unive	rsity Bvd											
4	L2	All MCs	45 21.0	45 21.0	0.127	8.3	LOSA	2.1	17.6	0.50	0.51	0.50	40.9
5	T1	All MCs	72 21.0	72 21.0	0.127	12.3	LOS B	2.1	17.6	0.50	0.51	0.50	38.0
6	R2	All MCs	88 21.0	88 21.0	0.203	19.6	LOS B	2.1	17.6	0.65	0.71	0.65	36.6
Appro	oach		205 21.0	205 21.0	0.203	14.5	LOS B	2.1	17.6	0.56	0.60	0.56	38.0
North	: Karra	ak Dr											
7	L2	All MCs	15 5.3	15 5.3	* 0.050	35.1	LOS D	0.5	3.6	0.87	0.68	0.87	30.7
8	T1	All MCs	1 5.3	1 5.3	0.046	30.5	LOS C	0.5	3.3	0.87	0.67	0.87	34.0
9	R2	All MCs	13 5.3	13 5.3	0.046	35.2	LOS D	0.5	3.3	0.87	0.67	0.87	28.3
Appro	oach		28 5.3	28 5.3	0.050	35.0	LOS C	0.5	3.6	0.87	0.67	0.87	29.8
West	: Unive	ersity Bvd											
10	L2	All MCs	145 20.7	145 20.7	0.330	16.3	LOS B	6.4	52.8	0.61	0.63	0.61	37.5
11	T1	All MCs	147 20.7	147 20.7	* 0.330	11.3	LOS B	6.4	52.8	0.61	0.63	0.61	35.6
12	R2	All MCs	40 20.7	40 20.7	0.067	15.5	LOS B	0.8	6.5	0.53	0.65	0.53	36.7
Appro	oach		333 20.7	333 20.7	0.330	14.0	LOS B	6.4	52.8	0.60	0.63	0.60	36.7
All Ve	hicles		663 22.7	663 22.7	0.330	18.6	LOS B	6.4	52.8	0.65	0.64	0.65	35.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian N	Pedestrian Movement Performance														
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE I Ped		Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist. S	Aver. Speed				
	ped/h	ped/h	sec		ped	m ¹			sec	m	m/sec				
South: Karrak	Dr														
P1 Full	50	53	14.0	LOS B	0.1	0.1	0.60	0.60	167.9	200.0	1.19				
East: University Bvd															

TOWN OF VICTORIA PARK Received: 07/01/2025

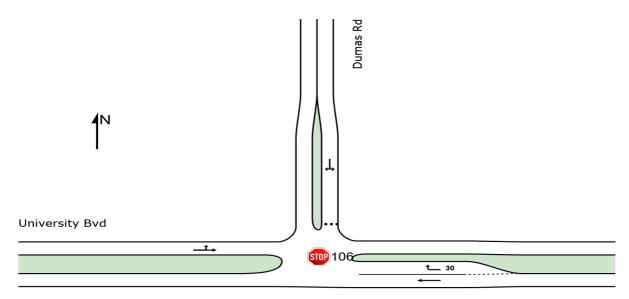
P2 Full	50	53	33.8	LOS D	0.1	0.1	0.93	0.93	187.6	200.0	1.07
North: Karrak	Dr										
P3 Full	50	53	15.2	LOS B	0.1	0.1	0.62	0.62	169.1	200.0	1.18
West: Univers	sity Bvd										
P4 Full	50	53	33.8	LOS D	0.1	0.1	0.93	0.93	187.6	200.0	1.07
All Pedestrians	200	211	24.2	LOSC	0.1	0.1	0.77	0.77	178.1	200.0	1.12

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:03:45 PM

Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9


SITE LAYOUT

5 Site: 106 [University Bvd / Dumas Rd (Site Folder: 2039) +DEV_AM)]

TOWN OF VICTORIA PARK Received: 07/01/2025

Site Category: (None) Stop (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

University Bvd

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 10:53:08 AM
Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

on Site: 106 [University Bvd / Dumas Rd (Site Folder: 2039)

+DEV_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Stop (Two-Way) TOWN OF VICTORIA PARK Received: 07/01/2025

Vehicle Movement Performance Mov Turn Mov Demand Arrival Deg. Aver. Level of 95% Back Of Prop. Eff. Aver. Aver.														
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h	
East:	Unive	rsity Bvd												
2	T1	All MCs	228 21.1	228 21.1	0.132	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	49.9	
3	R2 All MCs		73 21.1	73 21.1	0.053	5.4	LOSA	0.2	2.0	0.30	0.52	0.30	43.3	
Appro	oach		301 21.1	301 21.1	0.132	1.3	NA	0.2	2.0	0.07	0.13	0.07	48.3	
North	: Dum	as Rd												
4	L2	All MCs	5 10.6	5 10.6	0.075	5.0	LOSA	0.3	2.1	0.48	0.63	0.48	45.7	
6	R2	All MCs	44 10.6	44 10.6	0.075	8.3	LOS A	0.3	2.1	0.48	0.63	0.48	42.1	
Appro	oach		49 10.6	49 10.6	0.075	7.9	LOSA	0.3	2.1	0.48	0.63	0.48	42.5	
West	Unive	ersity Bvd												
7	L2	All MCs	68 24.4	68 24.4	0.093	4.8	LOSA	0.0	0.0	0.00	0.24	0.00	44.8	
8	T1	All MCs	85 24.4	85 24.4	0.093	0.0	LOS A	0.0	0.0	0.00	0.24	0.00	48.3	
Appro	oach		154 24.4	154 24.4	0.093	2.1	NA	0.0	0.0	0.00	0.24	0.00	47.0	
All Ve	II Vehicles		504 21.1	504 21.1	0.132	2.2	NA	0.3	2.1	0.09	0.21	0.09	47.4	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:03:45 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

🧓 Site: 106 [University Bvd / Dumas Rd (Site Folder: 2039

+DEV PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Stop (Two-Way)

Received: 07/01/2025	

TOWN OF VICTORIA PARK

Descinado 07/01/2025

Vehic	cle Mo	ovement	Performar	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Unive	rsity Bvd											
2	T1	All MCs	299 10.0	299 10.0	0.162	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	49.9
3	R2 All MCs		46 10.0	46 10.0	0.033	5.4	LOS A	0.1	1.1	0.32	0.53	0.32	43.5
Appro	ach		345 10.0	345 10.0	0.162	8.0	NA	0.1	1.1	0.04	0.07	0.04	49.0
North	: Dum	as Rd											
4	L2	All MCs	28 9.4	28 9.4	0.097	5.2	LOSA	0.4	2.8	0.46	0.60	0.46	45.9
6	R2	All MCs	42 9.4	42 9.4	0.097	9.4	LOSA	0.4	2.8	0.46	0.60	0.46	42.3
Appro	ach		71 9.4	71 9.4	0.097	7.7	LOSA	0.4	2.8	0.46	0.60	0.46	44.0
West	Unive	ersity Bvd											
7	L2	All MCs	54 12.4	54 12.4	0.113	4.7	LOS A	0.0	0.0	0.00	0.14	0.00	46.0
8	T1	All MCs	149 12.4	149 12.4	0.113	0.0	LOSA	0.0	0.0	0.00	0.14	0.00	48.9
Appro	Approach		203 12.4	203 12.4	0.113	1.3	NA	0.0	0.0	0.00	0.14	0.00	48.4
All Ve	hicles		619 10.7	619 10.7	0.162	1.7	NA	0.4	2.8	0.08	0.15	0.08	48.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:03:50 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

on Site: 106 [University Bvd / Dumas Rd (Site Folder: 2039)

+DEV_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

NA

Site Category: (None) Stop (Two-Way)

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh	ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h		
East:	Unive	rsity Bvd													
2	T1	All MCs	99 10.9	99 10.9	0.054	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	50.0		
3	R2	All MCs	8 10.9	8 10.9	0.005	4.8	LOS A	0.0	0.2	0.14	0.49	0.14	44.0		
Appro	oach		107 10.9	107 10.9	0.054	0.4	NA	0.0	0.2	0.01	0.04	0.01	49.5		
North	: Dum	as Rd													
4	L2	All MCs	3 8.6	3 8.6	0.018	4.8	LOS A	0.1	0.5	0.23	0.50	0.23	47.7		
6	R2	All MCs	15 8.6	15 8.6	0.018	5.5	LOS A	0.1	0.5	0.23	0.50	0.23	44.4		
Appro	oach		18 8.6	18 8.6	0.018	5.4	LOSA	0.1	0.5	0.23	0.50	0.23	45.1		
West	Unive	ersity Bvd													
7	L2	All MCs	9 11.6	9 11.6	0.028	4.7	LOS A	0.0	0.0	0.00	0.10	0.00	46.4		
8	T1	All MCs	41 11.6	41 11.6	0.028	0.0	LOS A	0.0	0.0	0.00	0.10	0.00	49.3		
Appro	ach		51 11.6	51 11.6	0.028	0.9	NA	0.0	0.0	0.00	0.10	0.00	48.9		
All Ve	hicles		176 10.9	176 10.9	0.054	1.0	NA	0.1	0.5	0.03	0.10	0.03	48.9		

TOWN OF VICTORIA PARK

Received: 07/01/2025

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

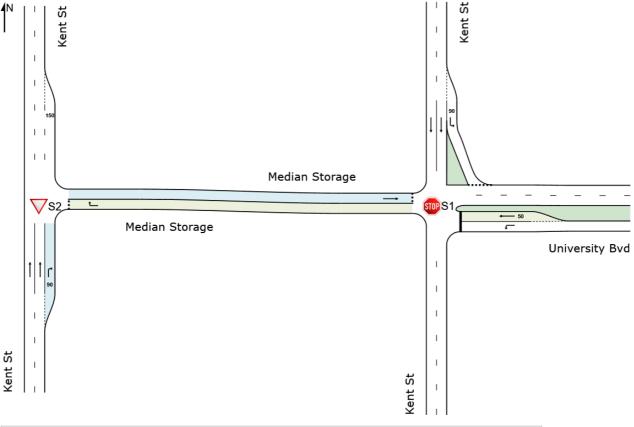
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:29:23 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

NETWORK LAYOUT

■■ Network: N101 [AM_Kent St / University Bvd (Network


Folder: 2039+DEV)]

TOWN OF VICTORIA PARK Received: 07/01/2025

New Network

Network Category: (None)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SITES IN I	NETWORK											
Site ID CCG ID Site Name												
 \$1	NA	Kent St / University Bvd										
∇s2	NA	Kent St / Univeristy Bvd										

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Created: Wednesday, 6 November 2024 10:55:20 AM
Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: S1 [Kent St / University Bvd (Site Folder: 2039 +DEV_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK
Received: 07/01/2025
Network: N101 [AM_Kent
St / University Bvd (Network

Folder: 2039+DEV)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Stop (Two-Way)

Vehic	cle Mo	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Unive	rsity Bvd													
1 2	L2 T1	All MCs All MCs		22.8 22.8		22.8 22.8	0.089 0.159	10.8 18.7	LOS B LOS C	0.3 0.5	2.8 3.8	0.47 0.74	0.92 1.02	0.47 0.74	42.0 21.0
Appro	ach		1192	22.8	119	22.8	0.159	13.9	LOS B	0.5	3.8	0.58	0.96	0.58	36.9
North	Kent	St													
3	L2 T1	All MCs		4.3 4.3	157 756	4.3 4.3	0.132 0.199	7.4 0.0	LOS A LOS A	0.6 0.0	4.0 0.0	0.30 0.00	0.59 0.00	0.30 0.00	47.3 69.9
Appro	ach		913	4.3	913	4.3	0.199	1.3	LOSA	0.6	4.0	0.05	0.10	0.05	66.4
West:	Media	an Storag	je												
5	T1	All MCs	169	3.0	169	3.0	0.244	4.2	LOSA	0.9	6.7	0.59	0.63	0.64	29.5
Appro	ach		169	3.0	169	3.0	0.244	4.2	LOSA	0.9	6.7	0.59	0.63	0.64	29.5
All Ve	hicles		1201	5.9	1201	5.9	0.244	3.0	NA	0.9	6.7	0.18	0.26	0.19	60.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab)

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:04:04 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

V Site: S2 [Kent St / Univeristy Bvd (Site Folder: 2039

+DEV_AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK
Received: 07/01/2025
Network: N101 [AM_Kent
St / University Bvd (Network

Folder: 2039+DEV)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Give-Way (Two-Way)

Vehic	cle M	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl	and ows		rival ows	Deg. Satn	Aver. Delay	Level of Service	95% Back	Of Queue	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total I veh/h		[Total l veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	: Kent	St													
2	T1	All MCs	962	3.0	962	3.0	0.252	0.1	LOSA	0.0	0.0	0.00	0.00	0.00	69.8
3	R2	All MCs	169	3.0	169	3.0	0.097	6.4	LOSA	0.0	0.0	0.00	0.66	0.00	56.4
Appro	ach		1132	3.0	1132	3.0	0.252	1.0	NA	0.0	0.0	0.00	0.10	0.00	68.3
East:	Media	ın Storage	Э												
1	R2	All MCs	47 2	22.8	47	22.8	0.173	14.8	LOS B	0.5	4.5	0.78	0.84	0.79	30.2
Appro	ach		47 2	22.8	47	22.8	0.173	14.8	LOS B	0.5	4.5	0.78	0.84	0.79	30.2
All Ve	hicles		1179	3.8	1179	3.8	0.252	1.6	NA	0.5	4.5	0.03	0.13	0.03	66.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:04:04 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106 300304837 SIDRA.sip9

Site: S1 [Kent St / University Bvd (Site Folder: 2039 +DEV_PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK
Received: 07/01/2025
Network: N101 [PM_Kent
St / University Bvd (Network

Folder: 2039+DEV)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Stop (Two-Way)

Vehic	cle Mo	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows	FI	rival ows	Deg. Satn	Aver. Delay	Level of Service		Of Queue	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			veh/h		[Total l veh/h	HV J %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Unive	rsity Bvd													
1	L2	All MCs	303	15.9	303	15.9	0.462	14.4	LOS B	2.7	21.4	0.67	1.11	0.97	41.0
2	T1	All MCs	136	15.9	136	15.9	0.786	37.4	LOS E	2.8	22.0	0.95	1.29	1.91	12.6
Appro	ach		439	15.9	439	15.9	0.786	21.5	LOS C	2.8	22.0	0.75	1.17	1.26	33.6
North	: Kent	St													
3	L2	All MCs	138	2.7	138	2.7	0.104	6.9	LOSA	0.4	3.1	0.18	0.55	0.18	48.2
4	T1	All MCs	1091	2.7	1091	2.7	0.285	0.1	LOSA	0.0	0.0	0.00	0.00	0.00	69.8
Appro	ach		1228	2.7	1228	2.7	0.285	0.8	LOSA	0.4	3.1	0.02	0.06	0.02	67.7
West:	Media	an Storag	je												
5	T1	All MCs	75	1.6	75	1.6	0.163	6.9	LOSA	0.5	3.8	0.73	0.73	0.73	26.2
Appro	ach		75	1.6	75	1.6	0.163	6.9	LOSA	0.5	3.8	0.73	0.73	0.73	26.2
All Ve	hicles		1742	6.0	1742	6.0	0.786	6.3	NA	2.8	22.0	0.24	0.37	0.36	56.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:04:07 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

V Site: S2 [Kent St / Univeristy Bvd (Site Folder: 2039

+DEV_PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK Received: 07/01/2025

Network: N101 [PM_Kent St / University Bvd (Network Folder: 2039+DEV)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Give-Way (Two-Way)

Vehic	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl	nand lows		rival lows	Deg. Satn	Aver. Delay	Level of Service	95% Back	Of Queue	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total veh/h		[Total veh/h	HV] <u>%</u>	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	: Kent	St													
2	T1	All MCs	782	1.6	782	1.6	0.203	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	69.9
3	R2	All MCs	75	1.6	75	1.6	0.041	6.4	LOSA	0.0	0.0	0.00	0.66	0.00	56.4
Appro	ach		857	1.6	857	1.6	0.203	0.6	NA	0.0	0.0	0.00	0.06	0.00	69.0
East:	Media	n Storag	е												
1	R2	All MCs	136	15.9	136	15.9	0.320	10.8	LOS B	1.3	10.6	0.72	0.91	0.89	34.3
Appro	ach		136	15.9	136	15.9	0.320	10.8	LOS B	1.3	10.6	0.72	0.91	0.89	34.3
All Ve	hicles		993	3.5	993	3.5	0.320	2.0	NA	1.3	10.6	0.10	0.17	0.12	64.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:04:07 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

Site: S1 [Kent St / University Bvd (Site Folder: 2039 +DEV_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK Received: 07/01/2025

Network: N101 [SAT_Kent St / University Bvd (Network Folder: 2039+DEV)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Stop (Two-Way)

Vehicle Movement Performance													
Mov ID	Turn	Mov Class	Demand Flows [Total HV]		Deg. Satn	Aver. Delay	Level of Service	95% Back [Veh.	Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
veh/h % veh/h % v/c sec veh m km/h East: University Bvd													
1	L2	All MCs	101 20.4	101 20.4	0.104	9.6	LOSA	0.4	3.4	0.38	0.90	0.38	43.2
2	T1	All MCs	24 20.4	24 20.4	0.047	12.7	LOS B	0.1	1.2	0.54	0.99	0.54	26.1
Appro	oach		125 20.4	125 20.4	0.104	10.2	LOS B	0.4	3.4	0.41	0.92	0.41	41.7
North: Kent St													
3	L2	All MCs	32 2.1	32 2.1	0.026	7.2	LOS A	0.1	0.7	0.27	0.56	0.27	47.8
4	T1	All MCs	504 2.1	504 2.1	0.131	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	69.9
Appro	oach		536 2.1	536 2.1	0.131	0.4	LOSA	0.1	0.7	0.02	0.03	0.02	68.8
West: Median Storage													
5	T1	All MCs	161 1.6	161 1.6	0.171	2.1	LOS A	0.6	4.6	0.48	0.41	0.48	33.0
Appro	oach		161 1.6	161 1.6	0.171	2.1	LOSA	0.6	4.6	0.48	0.41	0.48	33.0
All Ve	hicles		822 4.8	822 4.8	0.171	2.3	NA	0.6	4.6	0.17	0.24	0.17	60.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab)

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:54:49 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106_300304837_SIDRA.sip9

V Site: S2 [Kent St / Univeristy Bvd (Site Folder: 2039

+DEV_SAT)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TOWN OF VICTORIA PARK Received: 07/01/2025

Network: N101 [SAT_Kent St / University Bvd (Network

Folder: 2039+DEV)]

Type A Two-Stage T-Intersection Crossing Site Category: (None) Give-Way (Two-Way)

Vehicle Movement Performance															
Mov ID	Turn	Mov Class	Demand Flows				Deg. Satn	Aver. Delay	Level of Service	95% Back Of Queue Prop. Que			Eff. Stop	Aver. No. of	Aver. Speed
			[Total H veh/h		Total I veh/h	⊣∨] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South: Kent St															
2	T1	All MCs	545	1.6	545	1.6	0.141	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	69.9
3	R2	All MCs	161	1.6	161	1.6	0.088	6.4	LOSA	0.0	0.0	0.00	0.66	0.00	56.4
Appro	oach		706	1.6	706	1.6	0.141	1.5	NA	0.0	0.0	0.00	0.15	0.00	67.5
East: Median Storage															
1	R2	All MCs	24 2	0.4	24 2	20.4	0.041	5.4	LOSA	0.1	1.2	0.54	0.55	0.54	38.4
Appro	oach		24 2	0.4	24 2	20.4	0.041	5.4	LOSA	0.1	1.2	0.54	0.55	0.54	38.4
All Ve	hicles		731	2.3	731	2.3	0.141	1.6	NA	0.1	1.2	0.02	0.16	0.02	66.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO TECHNICAL ASIA, INC. | Licence: NETWORK / 1PC | Processed: Tuesday, 5 November 2024 5:54:49 PM Project: C:\Users\scano\Desktop\SIDRA (SP1)\300304837 - AHC Karrak Drive\20241104 Modelling\20241106 300304837 SIDRA.sip9

TOWN OF VICTORIA PARK Received: 07/01/2025

Stantec is a global leader in sustainable architecture, engineering, and environmental consulting. The diverse perspectives of our partners and interested parties drive us to think beyond what's previously been done on critical issues like climate change, digital transformation, and future-proofing our cities and infrastructure. We innovate at the intersection of community, creativity, and client relationships to advance communities everywhere, so that together we can redefine what's possible.