Element WA Level 18 No 191 St George's Tce PERTH WA 6000

Attention: Mr David Read

Dear David,

RE: PC21425 – Lots 306 North Park Burswood Point Tower. Stormwater Disposal

We can confirm that the stormwater retention and storage systems within the above development site has been designed to accommodate the stormwater runoff from the site footprint being the entire lot area as noted (designed in accordance with AS/NZS3500.3) as shown in Figure 1 and in accordance with the approved LWMS and the approved DA conditions (Condition 35) as noted below.

35. Stormwater run-off from constructed impervious surfaces generated by small rainfall events (that is, the first 15 mm of rainfall) must be retained and/or detained and treated (if required) at-source as much as practical and will not be permitted to enter the river untreated to the satisfaction of the Town of Victoria Park on the advice of the Department of Biodiversity, Conservation and Attractions.

Figure 1 - Plan of Subdivision (Lot 306)

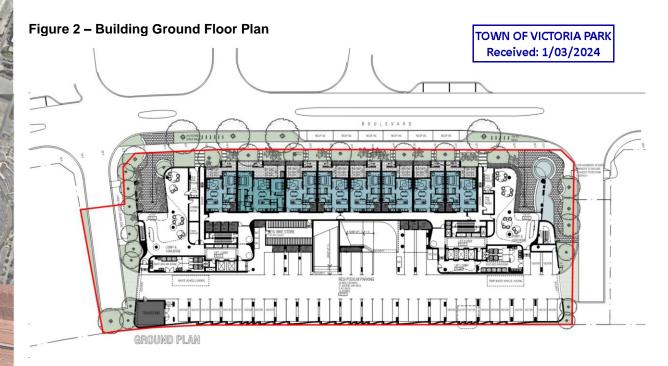
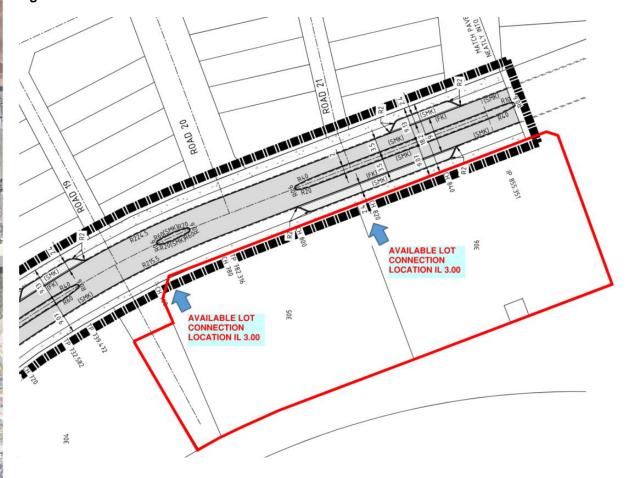



Figure 3 – Main Boulevarde Stormwater Connections Available to Lot 306

Basis of Design:

TOWN OF VICTORIA PARK Received: 1/03/2024

- Approved LWMS requires all lots to detain and treat (if required) retain the first 15 mm of rainfall on site.
- Soakage Rate available based on site fill: > 5 m / day.
- Soakage Rate used in design: No soakage on site was allowed for the calculations on retention of the 15mm first flush event.

Based on AS/NZS 3500 the following catchments areas have been assessed and allocated to the design analysis.

Site Footprint (Gross Area less landscaping) = 4,737 m2 x 0.95 = 4,500 m2

TOTAL IMPERMEABLE AREA = 4,500 m²

Therefore, the minimum size of on-site storage is to be 4,500 x 0.15mm = 67.50 m3.

The site has provided a total detention storage of 75.1 m3 (Refer to Appendix A).

Based on also accommodating the 1 in 100Yr event with an allowable 1 in 5 yr outflow from the site (80 litres/sec for the critical storm event), the on-site storage based on Tank, pipe and discharge manholes the Volume required is 60.3 m3.

The calculation of the 5yr outflow is as follows (note 6min Toc gives an allowed outflow of 120.3 litres/sec) but Toc = 10 mins was used for the actual storage calculation which allows for more storage on site:

 $Q_5 = 2.78 \times C \times I \times Aimp$ (Toc 6 mins = 96.2 mm/hr or Toc 10 mins = 75.8 mm/hr)

Using 10 min Toc the $Q_5 = 2.78 \times 0.85 \times (4,500 / 10,000) \times 75.8 \text{ mm/hr} = 94.83 \text{ litres /s}$

(Use 90 L/s for site outflow)

For Storage Tank Calculations refer to Appendix A.

Should you require any further information please do not hesitate to contact the undersigned.

Yours faithfully,

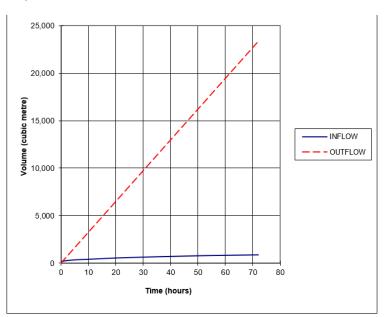
Enzo Biagioni-Froudist

Director

for Peritas Consulting Pty. Ltd.

Encl: Drainage storage Calculations & Supporting Design Sketches

DRAINAGE CALCULATIONS & RELATED DATA TOWN OF VICTORIA PARK


Calculations

Catchment areas (Refer to Sketches below further down in this Appendix)

Storage Soakage Calculator					Catchment	Area Desc	criptio	on: Catchment Wh	ole Site	(Lot 3	06) Project	Name:	Lot 306	North Park Date:	27/02/20:		
Location	Jandak	ot 🔻		Soil Type	No Soakag	e	Catchment Area	4,737	m ²	Critical Time	9 min						
			Soa	kage Rate	0.0	m/s	Run-off Coeff	0.95		Soakage Area	86.9	m ²					
Storm Event	100 yea	r 🔻	Rate	Override	0	m/s				Volume Required	60.6	m ³					
				\rightarrow	0.0	m³/s	Vol at 350m3/ha	165.8		Sub - Total Volume	70.1	m ³					
			Ot	her Outlet	0.090	m³/s	Vol at 15mm (m2)	67.5		Difference	-9.6	m3					
							Depth at 15mm (m)	0.903		Less Pavement Ponding	0.0	m ³	300	Pipe Di	am (mm)		
							2% Area for Bio (m2)	94.74		Less Pipe Storage	5.0	m ³	70	Pipe Le	ngth (m)		
										Total Volume Provided	75.1	m ³					
SOAKWELL	SIZE 1		SIZE 2		SIZE 3			TANK 1			BASIN 2	2	Graf E	coBlo	c Maxx	STORMTECH	SC-310
Diameter	1.8	m	1.20	m	1.05	m	Base Area	74.75	m ²	Base Area	0	m ²	Units High	0		Rows	0
Depth	1.8	m	0.9	m	1.5	m	Side Slope (1 in _)	0.0		Side Slope (1 in _)	0.0		Units Wide	0		Units per Row	0
Number	0		0		2		Storage Depth	0.900	m	Storage Depth	0.000	m	Jnits Long	0		Stone Cover	0.15
Stone Wrap	0.15	m	0.15	m	0.00	m										Stone Voids	0.40
Stone Voids	0.40		0.40		0.40												
filtration Area	0.0	m ²	0.0	m ²	11.6	m ²	Infiltration Area	75.3	$\rm m^2$	Infiltration Area	0.0	m ²		0.0	m ²	Infiltration Area	0.0
torage Volume	0.0	m ³	0.0	m ³	2.6	m ³	Storage Volume	67.5	${\rm m}^{\rm 3}$	Storage Volume	0.0	m ³		0.0	m ³	Storage Volume	0.0
																Footprint	0.5

CATCHMENT AREA: Catchment Whole Site (Lot 306)

TIME	INFLOW	OL	JTFLOW	STORAGE		
		Grou				
		nd	Allowable			
		Infiltra tion	Outlet			
	m ³	m ³	m ³	m ³		
6 min.	89	0	32	57		
9 min.	109	0	49	61		
12 min.	124	0	65	59		
15 min.	136	0	81	55		
20 min.	151	0	108	43		
30 min.	173	0	162	11		
45 min.	195	0	243	-48		
1 hour	210	0	324	-114		
2 hours	260	0	648	-388		
3 hours	293	0	972	-679		
6 hours	358	0	1,944	-1,586		
10 hours	404	0	3,240	-2,836		
12 hours	438	0	3,888	-3,450		
24 hours	594	0	7,776	-7,182		
48 hours	787	0	15,552	-14,765		
60 hours	852	0	19,440	-18,588		
72 hours	905	0	23,328	-22,423		

Received: 1/03/2024

Storage in pipe network & Discharge Manholes x 2-off (ignoring internal downpipes and conveyance network

Storage Provided = 7.6 m3

Storage in Landscaping areas (below ground storage tanks)

Storage Provided = 67.50 m3

Total Storage Volume Required (refer to above calculation sheets) = 67.5 m3

(To Satisfy on 15mm requirement)

Total Storage Volume Provided = 75.1 m3

SUPPORTING DESIGN SKETCHES

(Refer to full size plans below)

OWN OF VICTORIA PARK Received: 1/03/2024

BURSWOOD IFD DATA

TOWN OF VICTORIA PARK Received: 1/03/2024

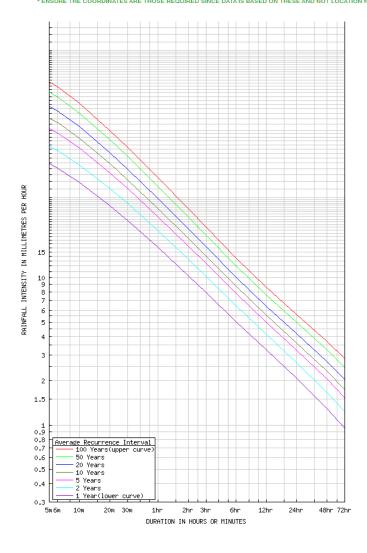
ME | ABOUT | MEDIA | CONTACTS

W | VIC | QLD | WA | SA | TAS | ACT | NT | AUSTRALIA | ANTARCT

LOCATION 31.950 S 115.900 E * NEAR.. Burswood WA

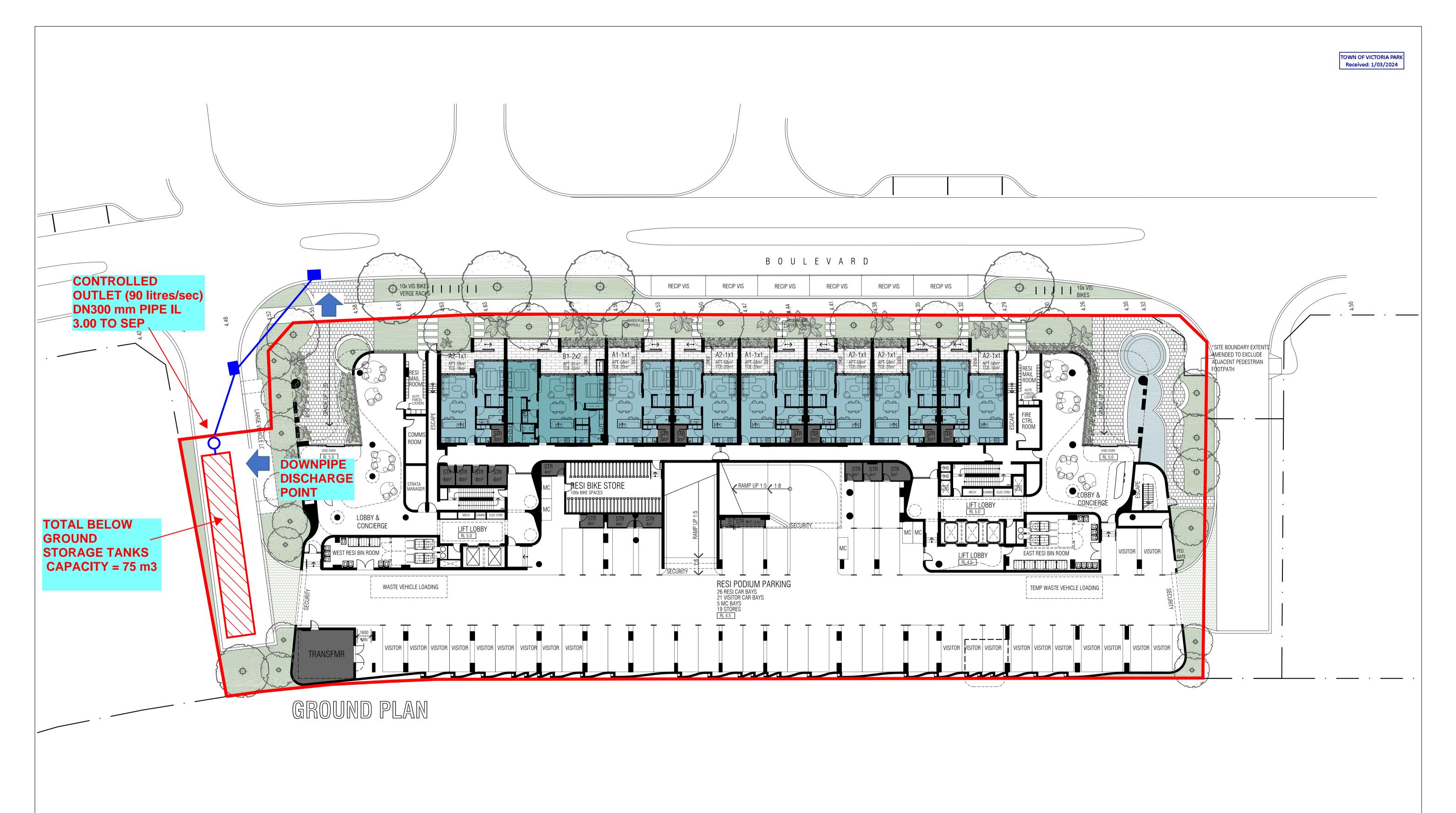
LIST OF COEFFICIENTS TO EQUATIONS OF THE FORM

 $ln(I) = A + B \times (ln(T)) + C \times (ln(T))^2 + D \times (ln(T))^3 + E \times (ln(T))^4 + F \times (ln(T))^5 + G \times (ln(T))^6$


RETURN PERIOD	Α	В	С	D	E	F	G
1	2.776412	-0.62856E+0	-0.20790E-1	0.73969E-2	-0.36168E-3	-0.72895E-4	-0.18217E-4
2	3.032809	-0.63623E+0	-0.19514E-1	0.70741E-2	-0.40988E-3	-0.46194E-5	-0.25485E-4
5	3.254875	-0.65464E+0	-0.18245E-1	0.61128E-2	-0.73948E-4	0.18493E-3	-0.67694E-4
10	3.382627	-0.66527E+0	-0.16924E-1	0.52885E-2	0.39061E-4	0.33688E-3	-0.95186E-4
20	3.540150	-0.67492E+0	-0.16091E-1	0.48621E-2	0.18026E-3	0.42972E-3	-0.11536E-3
50	3.731168	-0.68645E+0	-0.14957E-1	0.40589E-2	0.34361E-3	0.57279E-3	-0.14269E-3
100	3.866651	-0.69530E+0	-0.13909E-1	0.40164E-2	0.35328E-3	0.61171E-3	-0.14863E-3

RAINFALL INTENSITY IN mm/h FOR VARIOUS DURATIONS AND RETURN PERIODS

RETURN PERIOD (YEARS)


DURATION	1	2	5	10	20	50	100
5 mins	59.5	78.5	103.	121.	146.	183.	214.
6 mins	55.4	73.2	96.2	113.	136.	170.	199.
10 mins	44.3	58.2	75.8	88.3	106.	131.	153.
20 mins	30.9	40.4	51.6	59.5	70.5	86.6	100.
30 mins	24.5	31.9	40.4	46.2	54.5	66.6	76.7
1 hour	16.1	20.8	25.9	29.4	34.5	41.7	47.8
2 hours	10.3	13.3	16.4	18.5	21.5	25.8	29.4
3 hours	7.92	10.2	12.5	14.0	16.2	19.4	22.0
6 hours	5.05	6.46	7.84	8.76	10.1	12.0	13.6
12 hours	3.24	4.13	4.99	5.57	6.42	7.61	8.59
24 hours	2.07	2.64	3.22	3.60	4.17	4.97	5.62
48 hours	1.29	1.66	2.05	2.32	2.70	3.25	3.71
72 hours	.951	1.23	1.53	1.74	2.03	2.46	2.82

(Raw data: 21.39, 4.25, 1.27, 36.83, 6.81, 2.20,skew= 0.670)
HYDROMETEOROLOGICAL ADVISORY SERVICE
(C) AUSTRALIAN GOVERNMENT, BUREAU OF METEOROLOGY
* ENSURE THE COORDINATES ARE THOSE REQUIRED SINCE DATA IS BASED ON THESE AND NOT LOCATION

SUBDIVISION STORMWATER & LOT CONNEGILION/ LOCATIONS

PRELIMINARY STORMWATER MANAGEMENT PLAN

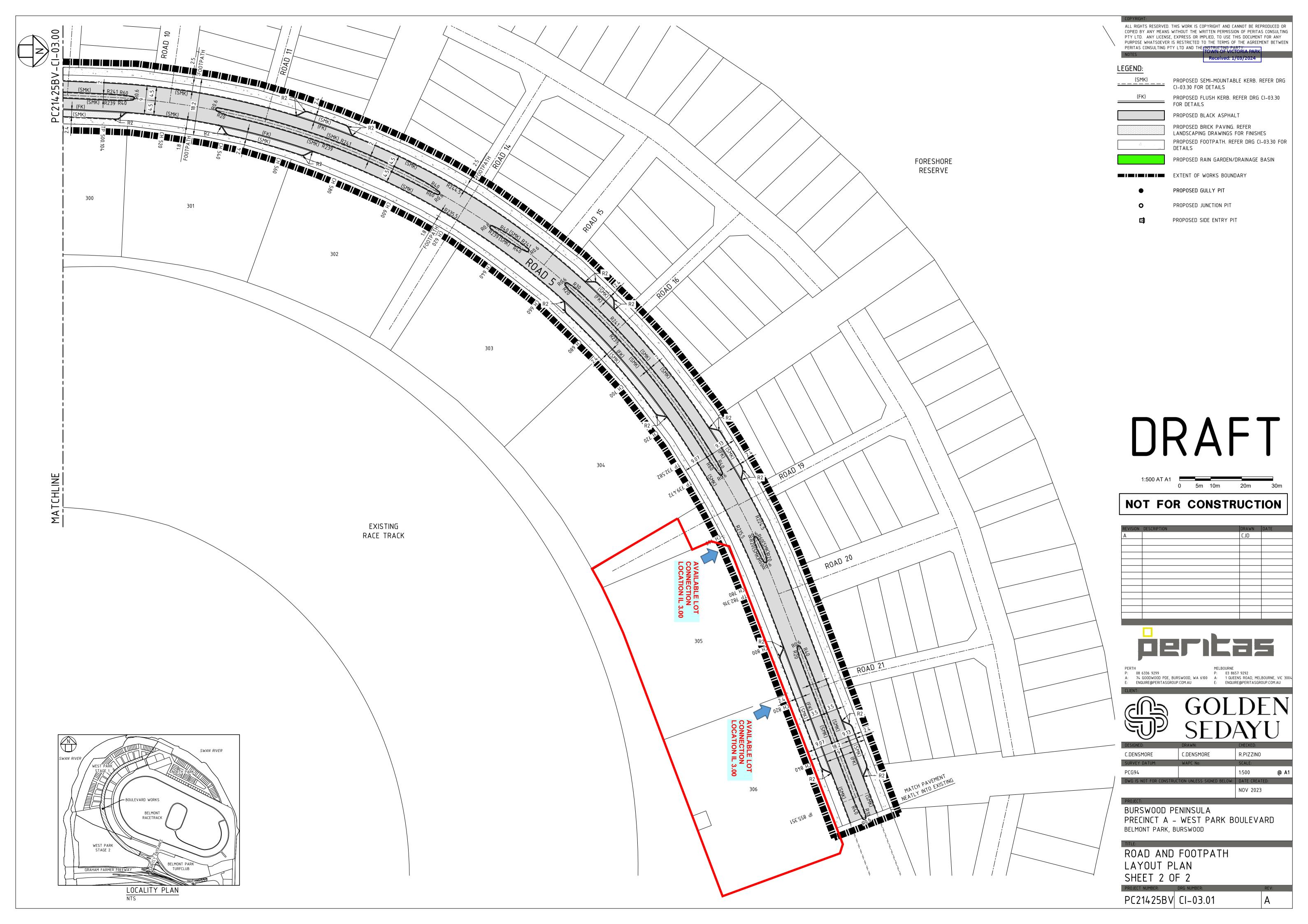
REV. DATE AMENDMENT 27.11.2023 PRELIM DA DD REVIEW 20.02.2024 TOWN PLANNING ISSUE

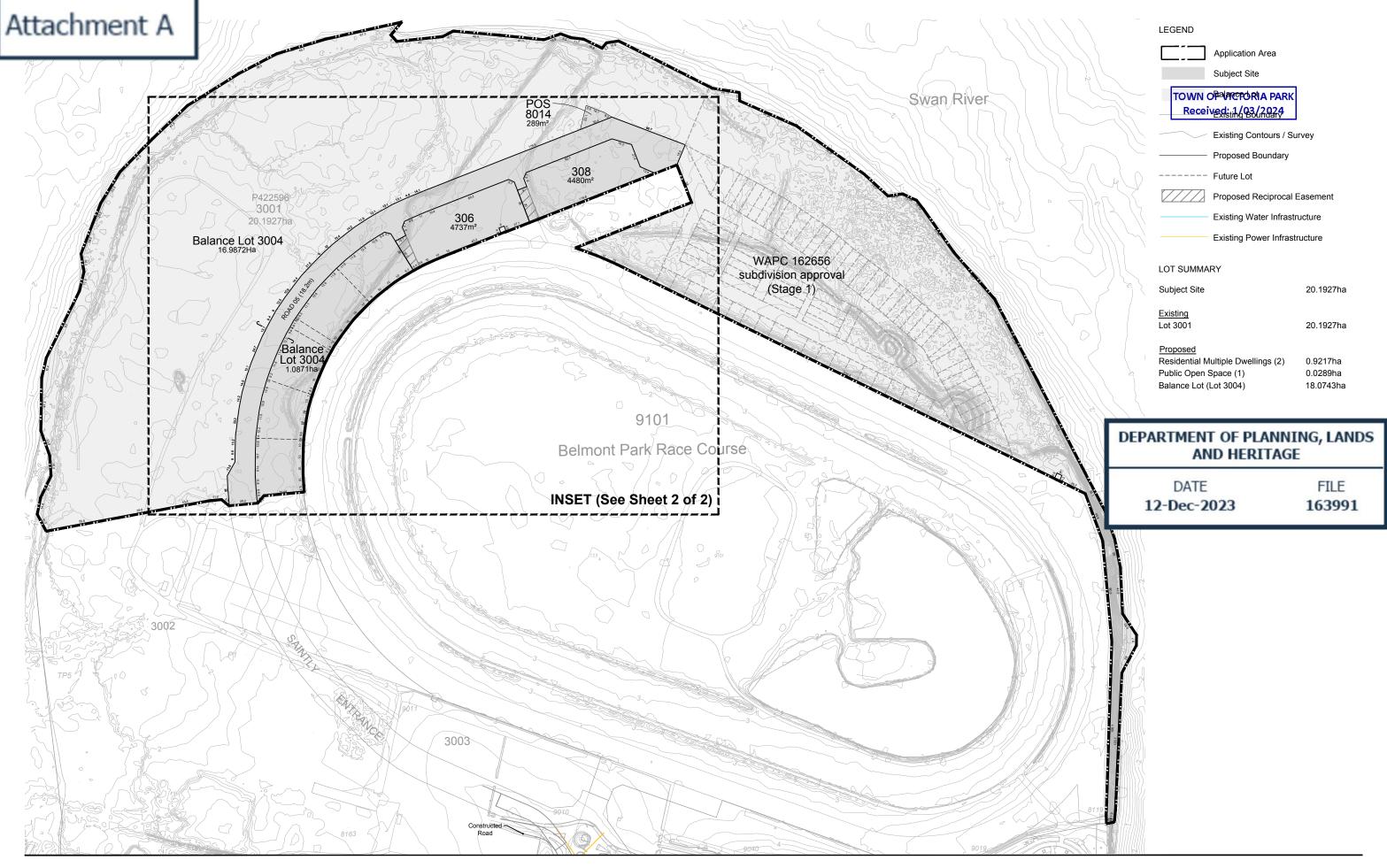
TOWN PLANNING: LANDSCAPE: SUSTAINABILITY: WIND: WASTE: ACOUSTIC: TRAFFIC: STRUCTURAL:

ELEMENT CAPA FULL CIRCLE DESIGN RWDI TALIS HERRING STORER LEVEL 5 DESIGN

CLIENT **GOLDEN SEDAYU** PROJECT

TOWER LOTS 305 + 306**BURSWOOD POINT** PROJECT STATUS TOWN PLANNING **BURSWOOD POINT**

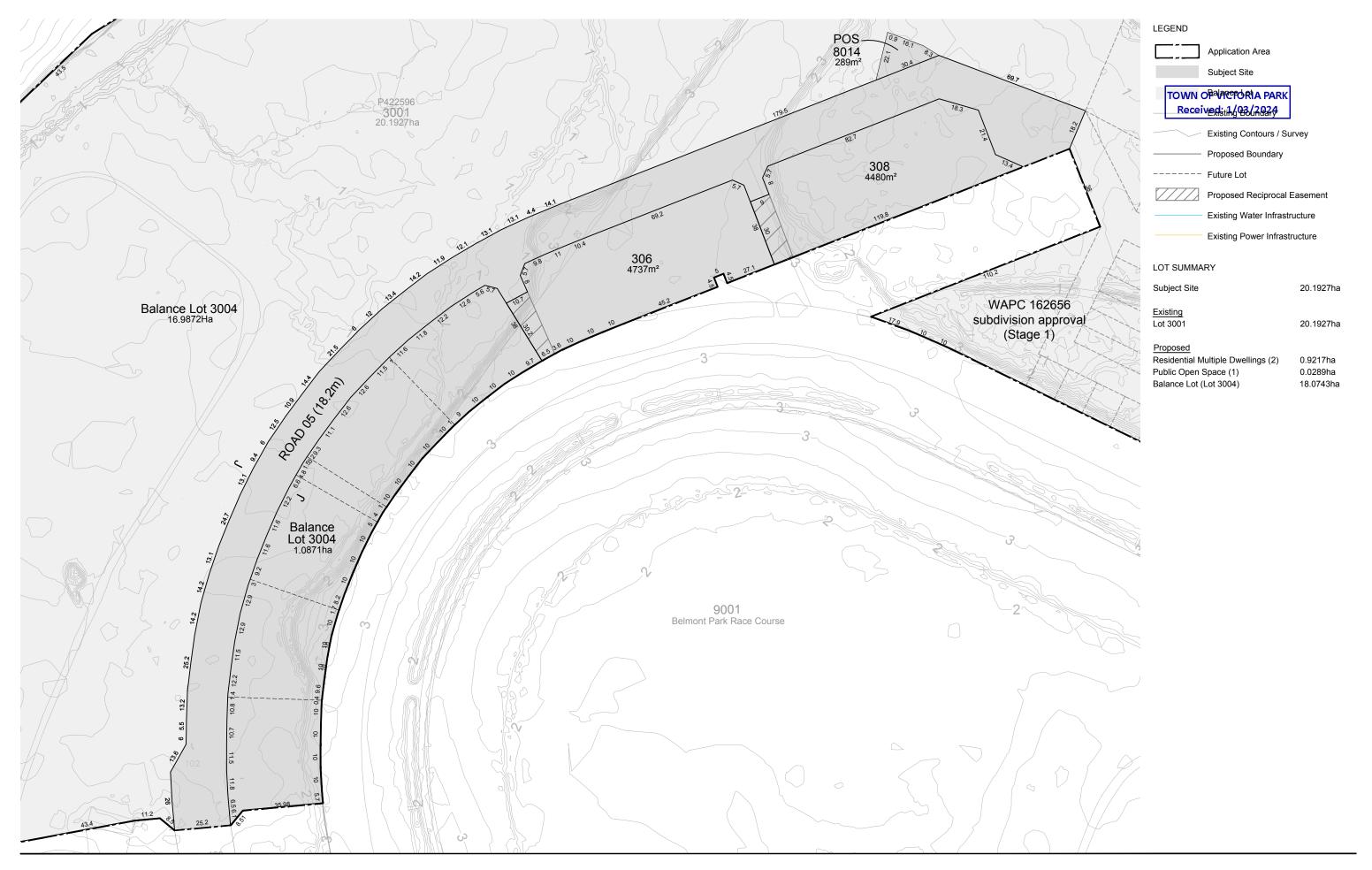

PROJECT ADDRESS


PROJECT NUMBER NORTH 23025 SCALE 1:200 @ A1

DRAWING FLOOR PLANS AS SHOWN DRAWING NO. DRAFTER CHECKED REV.

DA1.01

T +61 8 9388 0333 | www.mjastudio.net Copyright to this drawing is reserved by MJA_Studio and must not be retained or reproduced without their written permission. This is a CAD drawing, do not amend manually.



Lot 3001 (3) Graham Farmer Freeway, Burswood

element.

Lot 3001 (3) Graham Farmer Freeway, Burswood

element.

Level 18, 191 St Georges Terrace, Perth Western Australia 6000.

PO Box 7375 Cloisters Square, Perth Western Australia 6850.

T. +61 8 9289 8300 | E. hello@elementwa.com.au elementwa.com.au

Date: 7 December 2023 Scale: 1:1000 @ A3 1:500 @ A1 File: **21-055 SU03F** Staff: JP LC